Commit
·
b82b0e2
1
Parent(s):
996d82f
First version of the Custom Anchor Shape dataset.
Browse files- CustomAnchorShape.py +147 -0
- CustomAnchorShapeGenerator.py +245 -0
- README.md +0 -0
CustomAnchorShape.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hugging Face Loading script
|
| 2 |
+
|
| 3 |
+
from typing import List, Union
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
import datasets
|
| 7 |
+
from .CustomAnchorShapeGenerator import CustomAnchorShape
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# TODO: Add BibTeX citation
|
| 11 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 12 |
+
_CITATION = """\
|
| 13 |
+
@InProceedings{huggingface:dataset,
|
| 14 |
+
title = {A great new dataset},
|
| 15 |
+
author={huggingface, Inc.
|
| 16 |
+
},
|
| 17 |
+
year={2020}
|
| 18 |
+
}
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
# You can copy an official description
|
| 22 |
+
_DESCRIPTION = """\
|
| 23 |
+
This is Custom Anchor shape dataset.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
# TODO: Add a link to an official homepage for the dataset here
|
| 27 |
+
_HOMEPAGE = ""
|
| 28 |
+
|
| 29 |
+
# TODO: Add the licence for the dataset here if you can find it
|
| 30 |
+
_LICENSE = ""
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class CustomAnchorShapeConfig(datasets.BuilderConfig):
|
| 34 |
+
"""Builder Config for CustomShape."""
|
| 35 |
+
|
| 36 |
+
def __init__(self, size, custom_data, **kwargs):
|
| 37 |
+
"""BuilderConfig for CustomShape.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
**kwargs: keyword arguments forwarded to super.
|
| 41 |
+
"""
|
| 42 |
+
super(CustomAnchorShapeConfig, self).__init__(version=datasets.Version("1.0.0"),**kwargs)
|
| 43 |
+
self.size = size
|
| 44 |
+
self.custom_data = custom_data
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class CustomAnchorShapeDataset(datasets.GeneratorBasedBuilder):
|
| 48 |
+
"""CustomShape dataset."""
|
| 49 |
+
|
| 50 |
+
BUILDER_CONFIGS = [
|
| 51 |
+
CustomAnchorShapeConfig(
|
| 52 |
+
name='64size',
|
| 53 |
+
description='64x64 size custom shape dataset.',
|
| 54 |
+
size=64,
|
| 55 |
+
custom_data={
|
| 56 |
+
"train": ['s_curve',
|
| 57 |
+
'swiss_roll',
|
| 58 |
+
[0.5, 0.5],
|
| 59 |
+
[[0.25, 0.25], [0.75, 0.75]],],
|
| 60 |
+
"validation": ['s_curve',
|
| 61 |
+
'swiss_roll',
|
| 62 |
+
[0.5, 0.5],
|
| 63 |
+
[0.25, 0.25],
|
| 64 |
+
[0.25, 0.75],
|
| 65 |
+
[0.75, 0.75],
|
| 66 |
+
[0.75, 0.25],
|
| 67 |
+
[[0.25, 0.25], [0.75, 0.75]],
|
| 68 |
+
[[0.25, 0.75], [0.75, 0.25]],],
|
| 69 |
+
}
|
| 70 |
+
),
|
| 71 |
+
CustomAnchorShapeConfig(
|
| 72 |
+
name='224size',
|
| 73 |
+
description='224x224 size custom shape dataset.',
|
| 74 |
+
size=224,
|
| 75 |
+
custom_data={
|
| 76 |
+
"train": ['s_curve',
|
| 77 |
+
'swiss_roll',
|
| 78 |
+
[0.5, 0.5],
|
| 79 |
+
[[0.25, 0.25], [0.75, 0.75]],],
|
| 80 |
+
"validation": ['s_curve',
|
| 81 |
+
'swiss_roll',
|
| 82 |
+
[0.5, 0.5],
|
| 83 |
+
[0.25, 0.25],
|
| 84 |
+
[0.25, 0.75],
|
| 85 |
+
[0.75, 0.75],
|
| 86 |
+
[0.75, 0.25],
|
| 87 |
+
[[0.25, 0.25], [0.75, 0.75]],
|
| 88 |
+
[[0.25, 0.75], [0.75, 0.25]],],
|
| 89 |
+
}
|
| 90 |
+
),
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
def _info(self):
|
| 94 |
+
features = datasets.Features(
|
| 95 |
+
{
|
| 96 |
+
'image_id': datasets.Value('int64'),
|
| 97 |
+
'image': datasets.Image(),
|
| 98 |
+
'width': datasets.Value('int64'),
|
| 99 |
+
'height': datasets.Value('int64'),
|
| 100 |
+
'object': datasets.features.Sequence({
|
| 101 |
+
'bbox': datasets.features.Sequence(datasets.Value('float64')),
|
| 102 |
+
})
|
| 103 |
+
}
|
| 104 |
+
)
|
| 105 |
+
return datasets.DatasetInfo(
|
| 106 |
+
description=_DESCRIPTION,
|
| 107 |
+
features=features,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
def _split_generators(self, dl_manager):
|
| 111 |
+
return [
|
| 112 |
+
datasets.SplitGenerator(
|
| 113 |
+
name=datasets.Split.TRAIN,
|
| 114 |
+
gen_kwargs={
|
| 115 |
+
"width": self.config.size,
|
| 116 |
+
"height": self.config.size,
|
| 117 |
+
"custom_data": self.config.custom_data['train'],
|
| 118 |
+
},
|
| 119 |
+
),
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
def _generate_examples(
|
| 123 |
+
self,
|
| 124 |
+
size: Union[int, tuple],
|
| 125 |
+
custom_data: List[Union[np.ndarray, str]],
|
| 126 |
+
):
|
| 127 |
+
if isinstance(size, int):
|
| 128 |
+
width, height = size, size
|
| 129 |
+
else:
|
| 130 |
+
width, height = size
|
| 131 |
+
|
| 132 |
+
custom_shape = CustomAnchorShape(
|
| 133 |
+
width,
|
| 134 |
+
height,
|
| 135 |
+
custom_data=custom_data,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
for i, data in enumerate(custom_shape.custom_data):
|
| 139 |
+
yield {
|
| 140 |
+
'image_id': i,
|
| 141 |
+
'image': custom_shape.get_distribution(data, type='img'),
|
| 142 |
+
'width': width,
|
| 143 |
+
'height': height,
|
| 144 |
+
'object': {
|
| 145 |
+
'bbox': custom_shape.get_distribution(data, type='1d'),
|
| 146 |
+
}
|
| 147 |
+
}
|
CustomAnchorShapeGenerator.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Union
|
| 2 |
+
from abc import ABC, abstractmethod
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from sklearn.datasets import make_s_curve, make_swiss_roll
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class DataExpander(ABC):
|
| 10 |
+
"""Abstract class for data expander with different distribution."""
|
| 11 |
+
|
| 12 |
+
@abstractmethod
|
| 13 |
+
def expand_data(self, data: np.ndarray, size: int, **kwargs) -> np.ndarray:
|
| 14 |
+
"""Return the expanded data to size."""
|
| 15 |
+
raise NotImplementedError
|
| 16 |
+
|
| 17 |
+
@abstractmethod
|
| 18 |
+
def available_data(self, data: np.ndarray, **kwargs) -> np.ndarray:
|
| 19 |
+
"""Return the available data."""
|
| 20 |
+
raise NotImplementedError
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class AnchorExpander(DataExpander):
|
| 24 |
+
"""Class for anchor expander with different distribution.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
expand_type (str): expand type of the anchor distribution. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def __init__(self, expand_type: str = 'duplicate'):
|
| 31 |
+
self.expand_type = expand_type
|
| 32 |
+
self.type_map = {
|
| 33 |
+
'duplicate': self.duplicate,
|
| 34 |
+
'uniform': self.uniform,
|
| 35 |
+
'gauss': self.gauss,
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
def _get_anchor_number(self, anchors: np.ndarray):
|
| 39 |
+
"""Return the number of anchors."""
|
| 40 |
+
assert anchors.ndim == 2 , "anchors should be 2D array."
|
| 41 |
+
assert anchors.shape[1] == 2 or anchors.shape[1] == 4, "each anchor shaped as (cx, cy) or (cx, cy, w, h)."
|
| 42 |
+
return anchors.shape[0]
|
| 43 |
+
|
| 44 |
+
def expand_data(self, data: np.ndarray, size: int, **kwargs) -> np.ndarray:
|
| 45 |
+
"""Return the expanded data to size."""
|
| 46 |
+
anchor_num = self._get_anchor_number(data) + 1
|
| 47 |
+
expand_space = np.linspace(0, size, anchor_num).astype(int)
|
| 48 |
+
expand_num = expand_space[1:] - expand_space[:-1]
|
| 49 |
+
|
| 50 |
+
return self.type_map[self.expand_type](data, expand_num)
|
| 51 |
+
|
| 52 |
+
def available_data(self, data: np.ndarray, type=np.float32, **kwargs) -> np.ndarray:
|
| 53 |
+
"""Return the available anchors ranged [0, 1] with type."""
|
| 54 |
+
data[:, 0::2] = np.clip(data[:, 0::2], 0, 1)
|
| 55 |
+
data[:, 1::2] = np.clip(data[:, 1::2], 0, 1)
|
| 56 |
+
if data.dtype != type:
|
| 57 |
+
data = data.astype(type)
|
| 58 |
+
return data
|
| 59 |
+
|
| 60 |
+
def duplicate(self, anchors: np.ndarray, expand_num: np.ndarray):
|
| 61 |
+
"""Duplicate each anchor form anchors to expand_num."""
|
| 62 |
+
return anchors.repeat(expand_num, axis=0)
|
| 63 |
+
|
| 64 |
+
def uniform(self, anchors: np.ndarray, expand_num: np.ndarray):
|
| 65 |
+
"""Uniformly expand each anchor form anchors to expand_num in anchor region."""
|
| 66 |
+
assert anchors.shape[1] == 4, "Uniformly expand only support anchors shaped as (cx, cy, w, h)."
|
| 67 |
+
new_anchors = []
|
| 68 |
+
for n, (cx, cy, w, h) in zip(expand_num, anchors):
|
| 69 |
+
lt = [cx - w / 2, cy - h / 2]
|
| 70 |
+
rb = [cx + w / 2, cy + h / 2]
|
| 71 |
+
new_anchors.append(np.random.uniform(lt, rb, (n, 2)))
|
| 72 |
+
return np.concatenate(new_anchors, axis=0)
|
| 73 |
+
|
| 74 |
+
def gauss(self, anchors: np.ndarray, expand_num: np.ndarray):
|
| 75 |
+
"""Gaussian expand each anchor form anchors to expand_num in anchor region."""
|
| 76 |
+
assert anchors.shape[1] == 4, "Gaussian expand only support anchors shaped as (cx, cy, w, h)."
|
| 77 |
+
new_anchors = []
|
| 78 |
+
for n, (cx, cy, w, h) in zip(expand_num, anchors):
|
| 79 |
+
new_anchors.append(np.random.multivariate_normal([cx, cy], [[w, 0], [0, h]], n))
|
| 80 |
+
return np.concatenate(new_anchors, axis=0)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class DataDistributor(ABC):
|
| 84 |
+
"""Abstract class for data distributor."""
|
| 85 |
+
|
| 86 |
+
@abstractmethod
|
| 87 |
+
def get_distribution(self, data: np.ndarray, **kwargs):
|
| 88 |
+
"""Return the data distribution."""
|
| 89 |
+
raise NotImplementedError
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class AnchorDistributor(DataDistributor, AnchorExpander):
|
| 93 |
+
"""Abstract class for anchor distributor.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
width (int): width of the distribution.
|
| 97 |
+
height (int): height of the distribution.
|
| 98 |
+
depth (int): depth of the distribution. Default: 1.
|
| 99 |
+
expand_type (str): type of the anchor distribution. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'.
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
def __init__(self, width: int, height: int, depth: int = 1,
|
| 103 |
+
expand_type: str = 'duplicate'):
|
| 104 |
+
self.width = width
|
| 105 |
+
self.height = height
|
| 106 |
+
self.depth = depth
|
| 107 |
+
AnchorExpander.__init__(self, expand_type)
|
| 108 |
+
|
| 109 |
+
@property
|
| 110 |
+
def dis_point_num(self):
|
| 111 |
+
"""Return the number of expanded distribution points."""
|
| 112 |
+
return int(self.width * self.height)
|
| 113 |
+
|
| 114 |
+
def get_distribution(self, data: np.ndarray, type: str = '1d', **kwargs):
|
| 115 |
+
"""Return the anchor distribution."""
|
| 116 |
+
if type == '1d':
|
| 117 |
+
return self.to_1d_distribution(data)
|
| 118 |
+
elif type == 'img':
|
| 119 |
+
return self.to_img_distribution(data)
|
| 120 |
+
else:
|
| 121 |
+
raise ValueError(f"Unsupported distribute type {type}.")
|
| 122 |
+
|
| 123 |
+
def to_1d_distribution(self, anchors: np.ndarray):
|
| 124 |
+
"""Return the 1D distribution of anchors shaped [NxD, *]."""
|
| 125 |
+
anchors = np.repeat(anchors, self.depth, axis=0)
|
| 126 |
+
return anchors
|
| 127 |
+
|
| 128 |
+
def to_img_distribution(self, anchors: np.ndarray) -> Image.Image:
|
| 129 |
+
"""Return the Image filled distribution of anchors."""
|
| 130 |
+
assert self.depth == 1 or self.depth == 3, "Only support depth 1 (GRAY) or 3(RGB)."
|
| 131 |
+
img = filled_anchors(anchors, self.width, self.height)
|
| 132 |
+
gray_img = Image.fromarray(img)
|
| 133 |
+
if self.depth == 1:
|
| 134 |
+
return gray_img
|
| 135 |
+
else:
|
| 136 |
+
return gray_img.convert('RGB')
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def filled_anchors(anchors: np.ndarray, width: int, height: int) -> np.ndarray:
|
| 140 |
+
"""Return the hist filled in distributed anchors' c_xy along (x,y) shaped [W, H]."""
|
| 141 |
+
assert anchors.ndim == 2, "anchors should be 2D array."
|
| 142 |
+
assert anchors.max() <= 1 and anchors.min() >= 0, "anchors should be ranged [0, 1]."
|
| 143 |
+
|
| 144 |
+
anchor_cxcy = (anchors[:, :2] * np.array([width-1, height-1])).astype(int)
|
| 145 |
+
anchor_unique, anchor_counts = np.unique(anchor_cxcy, axis=0, return_counts=True)
|
| 146 |
+
anchor_counts = anchor_counts * 255.0 / anchor_counts.max()
|
| 147 |
+
anchor_counts = anchor_counts.astype(int).clip(0, 255)
|
| 148 |
+
anchor_index = anchor_unique[:, 1], anchor_unique[:, 0]
|
| 149 |
+
hist = np.zeros((width, height), dtype=np.uint8)
|
| 150 |
+
hist[anchor_index] = anchor_counts
|
| 151 |
+
return hist
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class CustomAnchorShape(AnchorDistributor):
|
| 155 |
+
"""Custom anchor shape distributor.
|
| 156 |
+
|
| 157 |
+
Args:
|
| 158 |
+
width (int): width of the distribution.
|
| 159 |
+
height (int): height of the distribution.
|
| 160 |
+
depth (int): depth of the distribution. Default: 1.
|
| 161 |
+
custom_data (List[Union[np.ndarray, str]]): custom data to be added to the sample. Include `s_curve`, `swiss_roll` and `custom_anchor`.
|
| 162 |
+
custom_anchor_combination (bool): whether to combine custom anchors.
|
| 163 |
+
custom_anchor_relative_coord (bool): whether the custom anchor is relative coordinate.
|
| 164 |
+
expand_type (str): how to expand the anchor. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'.
|
| 165 |
+
"""
|
| 166 |
+
|
| 167 |
+
def __init__(self, width: int, height: int,
|
| 168 |
+
depth: int = 1,
|
| 169 |
+
custom_data: List[Union[np.ndarray, str]] = [],
|
| 170 |
+
custom_anchor_combination: bool = False,
|
| 171 |
+
custom_anchor_relative_coord: bool = True,
|
| 172 |
+
expand_type: str = 'duplicate',):
|
| 173 |
+
AnchorDistributor.__init__(self, width, height, depth, expand_type)
|
| 174 |
+
self.custom_anchor_combination = custom_anchor_combination
|
| 175 |
+
self.custom_anchor_relative_coord = custom_anchor_relative_coord
|
| 176 |
+
self.custom_shapes = [data for data in custom_data if isinstance(data, str)]
|
| 177 |
+
self.custom_anchors = [data for data in custom_data if isinstance(data, (np.ndarray, list, tuple))]
|
| 178 |
+
|
| 179 |
+
@property
|
| 180 |
+
def custom_shapes(self):
|
| 181 |
+
return self._custom_shapes
|
| 182 |
+
|
| 183 |
+
@custom_shapes.setter
|
| 184 |
+
def custom_shapes(self, value: List[str]):
|
| 185 |
+
shapes = []
|
| 186 |
+
for shape in value:
|
| 187 |
+
assert isinstance(shape, str), "Custom shape must be str."
|
| 188 |
+
shapes.append(self._get_spical_shape(shape))
|
| 189 |
+
self._custom_shapes = shapes
|
| 190 |
+
|
| 191 |
+
@property
|
| 192 |
+
def custom_anchors(self):
|
| 193 |
+
return self._custom_anchors
|
| 194 |
+
|
| 195 |
+
@custom_anchors.setter
|
| 196 |
+
def custom_anchors(self, value: List[np.ndarray]):
|
| 197 |
+
anchors = []
|
| 198 |
+
for anchor in value:
|
| 199 |
+
if isinstance(anchor, (list, tuple)):
|
| 200 |
+
if not isinstance(anchor[0], (list, tuple)):
|
| 201 |
+
anchor = [anchor]
|
| 202 |
+
anchor = np.array(anchor)
|
| 203 |
+
assert isinstance(anchor, np.ndarray), "Custom anchor must be np.ndarray."
|
| 204 |
+
anchors.append(anchor)
|
| 205 |
+
self._custom_anchors = self._get_anchor_combinations(anchors)
|
| 206 |
+
|
| 207 |
+
@property
|
| 208 |
+
def custom_data(self):
|
| 209 |
+
return self.custom_shapes + self.custom_anchors
|
| 210 |
+
|
| 211 |
+
def _get_spical_shape(self, shape_name: str, type=np.float32) -> np.ndarray:
|
| 212 |
+
"""Get special shape data shaped [N, 2]. Range [0, 1]"""
|
| 213 |
+
if shape_name == 's_curve':
|
| 214 |
+
shape = make_s_curve(self.dis_point_num, noise=0.1)[0]
|
| 215 |
+
shape = shape[:, [0, 2]]
|
| 216 |
+
elif shape_name == 'swiss_roll':
|
| 217 |
+
shape = make_swiss_roll(self.dis_point_num, noise=0.5)[0]
|
| 218 |
+
shape = shape[:, [0, 2]]
|
| 219 |
+
else:
|
| 220 |
+
raise ValueError(f"Not supported shape {shape_name}. Only support 's_curve' or 'swiss_roll'.")
|
| 221 |
+
shape[:, 0] = (shape[:, 0] - shape[:, 0].min()) / (shape[:, 0].max() - shape[:, 0].min())
|
| 222 |
+
shape[:, 1] = (shape[:, 1] - shape[:, 1].min()) / (shape[:, 1].max() - shape[:, 1].min())
|
| 223 |
+
return shape.astype(type)
|
| 224 |
+
|
| 225 |
+
def _pad_custom_anchor(self, anchor:np.ndarray):
|
| 226 |
+
"""Pad custom anchor num to `self.dis_point_num`."""
|
| 227 |
+
if not self.custom_anchor_relative_coord:
|
| 228 |
+
anchor = anchor / np.array([self.width, self.height])
|
| 229 |
+
anchor = self.expand_data(anchor, self.dis_point_num)
|
| 230 |
+
return self.available_data(anchor)
|
| 231 |
+
|
| 232 |
+
def _get_anchor_combinations(self, anchors: np.ndarray) -> np.ndarray:
|
| 233 |
+
"""Get combinations of anchors shaped [C(N, 1)+...+C(N, N), N, 2]."""
|
| 234 |
+
comb_anchors = []
|
| 235 |
+
if self.custom_anchor_combination:
|
| 236 |
+
from itertools import combinations
|
| 237 |
+
index = np.arange(len(anchors))
|
| 238 |
+
for r in index:
|
| 239 |
+
for comb_i in combinations(index, r+1):
|
| 240 |
+
comb = np.concatenate([anchors[i] for i in comb_i], axis=0)
|
| 241 |
+
comb_anchors.append(self._pad_custom_anchor(comb))
|
| 242 |
+
else:
|
| 243 |
+
for anchor in anchors:
|
| 244 |
+
comb_anchors.append(self._pad_custom_anchor(anchor))
|
| 245 |
+
return comb_anchors
|
README.md
ADDED
|
File without changes
|