# Hugging Face Loading script from typing import List, Union import numpy as np import datasets from .CustomAnchorShapeGenerator import CustomAnchorShape # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={huggingface, Inc. }, year={2020} } """ # You can copy an official description _DESCRIPTION = """\ This is Custom Anchor shape dataset. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" class CustomAnchorShapeConfig(datasets.BuilderConfig): """Builder Config for CustomShape.""" def __init__(self, size, custom_data, **kwargs): """BuilderConfig for CustomShape. Args: **kwargs: keyword arguments forwarded to super. """ super(CustomAnchorShapeConfig, self).__init__(version=datasets.Version("1.0.0"),**kwargs) self.size = size self.custom_data = custom_data class CustomAnchorShapeDataset(datasets.GeneratorBasedBuilder): """CustomShape dataset.""" BUILDER_CONFIGS = [ CustomAnchorShapeConfig( name='64size', description='64x64 size custom shape dataset.', size=64, custom_data={ "train": ['s_curve', 'swiss_roll', [0.5, 0.5], [[0.25, 0.25], [0.75, 0.75]],], "validation": ['s_curve', 'swiss_roll', [0.5, 0.5], [0.25, 0.25], [0.25, 0.75], [0.75, 0.75], [0.75, 0.25], [[0.25, 0.25], [0.75, 0.75]], [[0.25, 0.75], [0.75, 0.25]],], } ), CustomAnchorShapeConfig( name='224size', description='224x224 size custom shape dataset.', size=224, custom_data={ "train": ['s_curve', 'swiss_roll', [0.5, 0.5], [[0.25, 0.25], [0.75, 0.75]],], "validation": ['s_curve', 'swiss_roll', [0.5, 0.5], [0.25, 0.25], [0.25, 0.75], [0.75, 0.75], [0.75, 0.25], [[0.25, 0.25], [0.75, 0.75]], [[0.25, 0.75], [0.75, 0.25]],], } ), ] def _info(self): features = datasets.Features( { 'image_id': datasets.Value('int64'), 'image': datasets.Image(), 'width': datasets.Value('int64'), 'height': datasets.Value('int64'), 'object': datasets.features.Sequence({ 'bbox': datasets.features.Sequence(datasets.Value('float64')), }) } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "width": self.config.size, "height": self.config.size, "custom_data": self.config.custom_data['train'], }, ), ] def _generate_examples( self, size: Union[int, tuple], custom_data: List[Union[np.ndarray, str]], ): if isinstance(size, int): width, height = size, size else: width, height = size custom_shape = CustomAnchorShape( width, height, custom_data=custom_data, ) for i, data in enumerate(custom_shape.custom_data): yield { 'image_id': i, 'image': custom_shape.get_distribution(data, type='img'), 'width': width, 'height': height, 'object': { 'bbox': custom_shape.get_distribution(data, type='1d'), } }