from typing import List, Union from abc import ABC, abstractmethod import numpy as np from PIL import Image from sklearn.datasets import make_s_curve, make_swiss_roll class DataExpander(ABC): """Abstract class for data expander with different distribution.""" @abstractmethod def expand_data(self, data: np.ndarray, size: int, **kwargs) -> np.ndarray: """Return the expanded data to size.""" raise NotImplementedError @abstractmethod def available_data(self, data: np.ndarray, **kwargs) -> np.ndarray: """Return the available data.""" raise NotImplementedError class AnchorExpander(DataExpander): """Class for anchor expander with different distribution. Args: expand_type (str): expand type of the anchor distribution. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'. """ def __init__(self, expand_type: str = 'duplicate'): self.expand_type = expand_type self.type_map = { 'duplicate': self.duplicate, 'uniform': self.uniform, 'gauss': self.gauss, } def _get_anchor_number(self, anchors: np.ndarray): """Return the number of anchors.""" assert anchors.ndim == 2 , "anchors should be 2D array." assert anchors.shape[1] == 2 or anchors.shape[1] == 4, "each anchor shaped as (cx, cy) or (cx, cy, w, h)." return anchors.shape[0] def expand_data(self, data: np.ndarray, size: int, **kwargs) -> np.ndarray: """Return the expanded data to size.""" anchor_num = self._get_anchor_number(data) + 1 expand_space = np.linspace(0, size, anchor_num).astype(int) expand_num = expand_space[1:] - expand_space[:-1] return self.type_map[self.expand_type](data, expand_num) def available_data(self, data: np.ndarray, type=np.float32, **kwargs) -> np.ndarray: """Return the available anchors ranged [0, 1] with type.""" data[:, 0::2] = np.clip(data[:, 0::2], 0, 1) data[:, 1::2] = np.clip(data[:, 1::2], 0, 1) if data.dtype != type: data = data.astype(type) return data def duplicate(self, anchors: np.ndarray, expand_num: np.ndarray): """Duplicate each anchor form anchors to expand_num.""" return anchors.repeat(expand_num, axis=0) def uniform(self, anchors: np.ndarray, expand_num: np.ndarray): """Uniformly expand each anchor form anchors to expand_num in anchor region.""" assert anchors.shape[1] == 4, "Uniformly expand only support anchors shaped as (cx, cy, w, h)." new_anchors = [] for n, (cx, cy, w, h) in zip(expand_num, anchors): lt = [cx - w / 2, cy - h / 2] rb = [cx + w / 2, cy + h / 2] new_anchors.append(np.random.uniform(lt, rb, (n, 2))) return np.concatenate(new_anchors, axis=0) def gauss(self, anchors: np.ndarray, expand_num: np.ndarray): """Gaussian expand each anchor form anchors to expand_num in anchor region.""" assert anchors.shape[1] == 4, "Gaussian expand only support anchors shaped as (cx, cy, w, h)." new_anchors = [] for n, (cx, cy, w, h) in zip(expand_num, anchors): new_anchors.append(np.random.multivariate_normal([cx, cy], [[w, 0], [0, h]], n)) return np.concatenate(new_anchors, axis=0) class DataDistributor(ABC): """Abstract class for data distributor.""" @abstractmethod def get_distribution(self, data: np.ndarray, **kwargs): """Return the data distribution.""" raise NotImplementedError class AnchorDistributor(DataDistributor, AnchorExpander): """Abstract class for anchor distributor. Args: width (int): width of the distribution. height (int): height of the distribution. depth (int): depth of the distribution. Default: 1. expand_type (str): type of the anchor distribution. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'. """ def __init__(self, width: int, height: int, depth: int = 1, expand_type: str = 'duplicate'): self.width = width self.height = height self.depth = depth AnchorExpander.__init__(self, expand_type) @property def dis_point_num(self): """Return the number of expanded distribution points.""" return int(self.width * self.height) def get_distribution(self, data: np.ndarray, type: str = '1d', **kwargs): """Return the anchor distribution.""" if type == '1d': return self.to_1d_distribution(data) elif type == 'img': return self.to_img_distribution(data) else: raise ValueError(f"Unsupported distribute type {type}.") def to_1d_distribution(self, anchors: np.ndarray): """Return the 1D distribution of anchors shaped [NxD, *].""" anchors = np.repeat(anchors, self.depth, axis=0) return anchors def to_img_distribution(self, anchors: np.ndarray) -> Image.Image: """Return the Image filled distribution of anchors.""" assert self.depth == 1 or self.depth == 3, "Only support depth 1 (GRAY) or 3(RGB)." img = filled_anchors(anchors, self.width, self.height) gray_img = Image.fromarray(img, mode='L') if self.depth == 1: return gray_img else: return gray_img.convert('RGB') def filled_anchors(anchors: np.ndarray, width: int, height: int) -> np.ndarray: """Return the hist filled in distributed anchors' c_xy along (x,y) shaped [W, H].""" assert anchors.ndim == 2, "anchors should be 2D array." assert anchors.max() <= 1 and anchors.min() >= 0, "anchors should be ranged [0, 1]." anchor_cxcy = (anchors[:, :2] * np.array([width-1, height-1])).astype(int) anchor_unique, anchor_counts = np.unique(anchor_cxcy, axis=0, return_counts=True) anchor_counts = anchor_counts * 255.0 / anchor_counts.max() anchor_counts = anchor_counts.astype(int).clip(0, 255) anchor_index = anchor_unique[:, 1], anchor_unique[:, 0] hist = np.zeros((width, height), dtype=np.uint8) hist[anchor_index] = anchor_counts return hist class CustomAnchorShape(AnchorDistributor): """Custom anchor shape distributor. Args: width (int): width of the distribution. height (int): height of the distribution. depth (int): depth of the distribution. Default: 1. custom_data (List[Union[np.ndarray, str]]): custom data to be added to the sample. Include `s_curve`, `swiss_roll` and `custom_anchor`. custom_anchor_combination (bool): whether to combine custom anchors. custom_anchor_relative_coord (bool): whether the custom anchor is relative coordinate. expand_type (str): how to expand the anchor. Options include `duplicate` or `uniform` or `gauss`. Default: 'duplicate'. """ def __init__(self, width: int, height: int, depth: int = 1, custom_data: List[Union[np.ndarray, str]] = [], custom_anchor_combination: bool = False, custom_anchor_relative_coord: bool = True, expand_type: str = 'duplicate',): AnchorDistributor.__init__(self, width, height, depth, expand_type) self.custom_anchor_combination = custom_anchor_combination self.custom_anchor_relative_coord = custom_anchor_relative_coord self.custom_shapes = [data for data in custom_data if isinstance(data, str)] self.custom_anchors = [data for data in custom_data if isinstance(data, (np.ndarray, list, tuple))] @property def custom_shapes(self): return self._custom_shapes @custom_shapes.setter def custom_shapes(self, value: List[str]): shapes = [] for shape in value: assert isinstance(shape, str), "Custom shape must be str." shapes.append(self._get_spical_shape(shape)) self._custom_shapes = shapes @property def custom_anchors(self): return self._custom_anchors @custom_anchors.setter def custom_anchors(self, value: List[np.ndarray]): anchors = [] for anchor in value: if isinstance(anchor, (list, tuple)): if not isinstance(anchor[0], (list, tuple)): anchor = [anchor] anchor = np.array(anchor) assert isinstance(anchor, np.ndarray), "Custom anchor must be np.ndarray." anchors.append(anchor) self._custom_anchors = self._get_anchor_combinations(anchors) @property def custom_data(self): return self.custom_shapes + self.custom_anchors def _get_spical_shape(self, shape_name: str, type=np.float32) -> np.ndarray: """Get special shape data shaped [N, 2]. Range [0, 1]""" if shape_name == 's_curve': shape = make_s_curve(self.dis_point_num, noise=0.1)[0] shape = shape[:, [0, 2]] elif shape_name == 'swiss_roll': shape = make_swiss_roll(self.dis_point_num, noise=0.5)[0] shape = shape[:, [0, 2]] else: raise ValueError(f"Not supported shape {shape_name}. Only support 's_curve' or 'swiss_roll'.") shape[:, 0] = (shape[:, 0] - shape[:, 0].min()) / (shape[:, 0].max() - shape[:, 0].min()) shape[:, 1] = (shape[:, 1] - shape[:, 1].min()) / (shape[:, 1].max() - shape[:, 1].min()) return shape.astype(type) def _pad_custom_anchor(self, anchor:np.ndarray): """Pad custom anchor num to `self.dis_point_num`.""" if not self.custom_anchor_relative_coord: anchor = anchor / np.array([self.width, self.height]) anchor = self.expand_data(anchor, self.dis_point_num) return self.available_data(anchor) def _get_anchor_combinations(self, anchors: np.ndarray) -> np.ndarray: """Get combinations of anchors shaped [C(N, 1)+...+C(N, N), N, 2].""" comb_anchors = [] if self.custom_anchor_combination: from itertools import combinations index = np.arange(len(anchors)) for r in index: for comb_i in combinations(index, r+1): comb = np.concatenate([anchors[i] for i in comb_i], axis=0) comb_anchors.append(self._pad_custom_anchor(comb)) else: for anchor in anchors: comb_anchors.append(self._pad_custom_anchor(anchor)) return comb_anchors