Jr23xd23 commited on
Commit
fa66b4a
·
verified ·
1 Parent(s): b2d59b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -76
README.md CHANGED
@@ -32,24 +32,24 @@ configs:
32
  ![Words](https://img.shields.io/badge/Words-244M-orange)
33
  ![License](https://img.shields.io/badge/License-Apache%202.0-yellow)
34
 
35
- ## 📋 Dataset Summary
36
 
37
  **ArabicText-Large** is a comprehensive, high-quality Arabic text corpus comprising **743,288 articles** with over **244 million words**, specifically curated for Large Language Model (LLM) training and fine-tuning. This dataset represents one of the largest publicly available Arabic text collections for machine learning research.
38
 
39
  This corpus addresses the critical shortage of high-quality Arabic NLP resources through rigorous preprocessing, quality filtering, and validation protocols.
40
 
41
- ## 🎯 Key Features
42
 
43
- - **Massive Scale**: 743K articles with 244M words
44
- - **High Quality**: Multi-stage cleaning and quality filtering (avg. quality score: 58.3%)
45
- - **LLM-Ready**: Optimized JSONL format for direct use in training pipelines
46
- - **Diverse Content**: 9 major topic categories (History, Science, Geography, etc.)
47
- - **Clean Text**: Professional removal of artifacts, references, and formatting noise
48
- - **Modern Standard Arabic**: 94.2% Arabic content purity
49
- - **Rich Vocabulary**: 1.5M+ unique words
50
- - **Open License**: Apache 2.0 for commercial and research use
51
 
52
- ## 📊 Dataset Statistics
53
 
54
  | Metric | Value |
55
  |--------|-------|
@@ -64,7 +64,7 @@ This corpus addresses the critical shortage of high-quality Arabic NLP resources
64
  | **Dataset Size** | 2.8 GB (compressed) |
65
  | **Arabic Content Purity** | 94.2% |
66
 
67
- ## 🏷️ Content Distribution
68
 
69
  | Topic Category | Articles | Percentage |
70
  |----------------|----------|------------|
@@ -78,7 +78,7 @@ This corpus addresses the critical shortage of high-quality Arabic NLP resources
78
  | Sports | 51,830 | 7.0% |
79
  | Other Topics | 22,298 | 3.0% |
80
 
81
- ## Quality Assessment
82
 
83
  | Quality Tier | Articles | Percentage |
84
  |--------------|----------|------------|
@@ -89,7 +89,7 @@ This corpus addresses the critical shortage of high-quality Arabic NLP resources
89
  **Average Quality Score**: 58.3%
90
  **High-Quality Articles (≥60%)**: 58.7%
91
 
92
- ## 💻 Usage
93
 
94
  ### Loading with Hugging Face Datasets
95
 
@@ -97,7 +97,7 @@ This corpus addresses the critical shortage of high-quality Arabic NLP resources
97
  from datasets import load_dataset
98
 
99
  # Load the dataset
100
- dataset = load_dataset("htu-ai/ArabicText-Large")
101
 
102
  # Access the training split
103
  train_data = dataset["train"]
@@ -144,23 +144,23 @@ Each entry in the dataset follows this structure:
144
  }
145
  ```
146
 
147
- ## 🚀 Use Cases
148
 
149
  ### Language Model Pre-training
150
 
151
  - **BERT-style models**: Masked language modeling, text understanding
152
  - **GPT-style models**: Causal language modeling, text generation
153
- - **T5-style models**: Encoder-decoder architectures, seq2seq tasks
154
- - **Fine-tuning**: Domain adaptation for Arabic-specific tasks
155
 
156
  ### Downstream NLP Tasks
157
 
158
- - **Text Classification**: Sentiment analysis, topic classification
159
  - **Named Entity Recognition**: Entity extraction and tagging
160
  - **Question Answering**: Reading comprehension, information retrieval
161
  - **Text Summarization**: Abstractive and extractive summarization
162
- - **Machine Translation**: Arabic-English, Arabic-French translation
163
- - **Information Extraction**: Relationship extraction, knowledge graphs
164
 
165
  ### Research Applications
166
 
@@ -168,52 +168,53 @@ Each entry in the dataset follows this structure:
168
  - Cross-lingual transfer learning
169
  - Multilingual model development
170
  - Low-resource language processing research
 
171
 
172
- ## 🏗️ Data Processing Pipeline
173
 
174
  Our multi-stage processing ensures the highest quality:
175
 
176
- 1. **📥 Source Collection**: Curated from reliable, peer-reviewed sources
177
- 2. **🧹 Artifact Removal**: Eliminated references, citations, navigation elements
178
- 3. **🔤 Text Normalization**: Arabic-specific normalization (diacritics, punctuation)
179
- 4. **🎯 Quality Filtering**: Minimum 70% Arabic content, length constraints
180
- 5. **📊 Quality Scoring**: Multi-dimensional assessment (structure, linguistics, coherence)
181
- 6. **♻️ Deduplication**: Hash-based exact + MinHash LSH near-duplicate removal
182
- 7. **✅ Validation**: Format verification, encoding checks, statistical validation
183
 
184
  ### Quality Criteria
185
 
186
- Articles are retained only if they meet:
187
- - Minimum 100 characters, maximum 50,000 characters
188
- - At least 70% Arabic characters
189
- - Minimum 3 sentences for substantive content
190
- - Quality score ≥40% on multi-dimensional assessment
191
- - No stub indicators (e.g., "بحاجة للتوسيع")
192
 
193
- ## 📈 Dataset Metrics
194
 
195
  ### Length Distributions
196
 
197
  **Article Lengths:**
198
- - Min: 50 words
199
- - Max: 20,757 words
200
  - Median: 106 words
201
  - Mean: 328.5 words
202
- - Std Dev: 584.2 words
203
 
204
  **Sentence Lengths:**
205
- - Min: 1 word
206
- - Max: 247 words
207
  - Median: 16 words
208
  - Mean: 19.7 words
209
- - Std Dev: 12.3 words
210
 
211
  **Word Lengths:**
212
- - Min: 1 character
213
- - Max: 42 characters
214
  - Median: 4 characters
215
  - Mean: 4.9 characters
216
- - Std Dev: 2.8 characters
217
 
218
  ### Vocabulary Statistics
219
 
@@ -223,15 +224,15 @@ Articles are retained only if they meet:
223
 
224
  **Most Frequent Words:**
225
 
226
- | Rank | Word (Arabic) | Translation | Frequency | % |
227
- |------|---------------|-------------|-----------|---|
228
  | 1 | في | in | 9,778,012 | 4.01% |
229
  | 2 | من | from | 7,346,952 | 3.01% |
230
  | 3 | على | on | 3,324,220 | 1.36% |
231
  | 4 | إلى | to | 2,453,720 | 1.01% |
232
  | 5 | أن | that | 1,595,356 | 0.65% |
233
 
234
- ## 🛠️ Technical Specifications
235
 
236
  - **Format**: JSONL (JSON Lines)
237
  - **Encoding**: UTF-8
@@ -241,33 +242,33 @@ Articles are retained only if they meet:
241
  - **License**: Apache 2.0
242
  - **Python Compatibility**: 3.7+
243
 
244
- ## 📊 Comparison with Other Arabic Datasets
245
 
246
  | Dataset | Words | Articles | Domain | Quality | Year | License |
247
  |---------|-------|----------|--------|---------|------|---------|
248
- | Arabic Gigaword | 848M | - | News | Moderate | 2011 | LDC |
249
- | AraBERT Corpus | 70M | - | Mixed | Good | 2020 | MIT |
250
- | OSCAR-Arabic | 22B | - | Web | Variable | 2019 | CC0 |
251
- | mC4-Arabic | 42B | - | Web | Variable | 2021 | ODC-BY |
252
  | **ArabicText-Large** | **244M** | **743K** | **Encyclopedia** | **High** | **2025** | **Apache 2.0** |
253
 
254
- ## ⚠️ Limitations
255
 
256
  - **Dialectal Coverage**: Primarily Modern Standard Arabic (MSA); limited dialectal variations
257
  - **Domain Bias**: Encyclopedic content may not represent colloquial or conversational Arabic
258
- - **Temporal Coverage**: Content reflects knowledge up to dataset collection date (2025)
259
- - **Size Trade-off**: Smaller than billion-word web corpora but higher quality
260
 
261
- ## 🔮 Future Enhancements
262
 
263
  Planned improvements include:
264
  - Dialectal Arabic expansion (Egyptian, Levantine, Gulf, Maghrebi)
265
- - Domain diversification (literature, technical documents, news)
266
  - Parallel corpus creation (Arabic-English alignments)
267
  - Linguistic annotations (POS tags, NER, dependency parsing)
268
- - Regular updates with new content
269
 
270
- ## 📄 License
271
 
272
  This dataset is released under the **Apache License 2.0**.
273
 
@@ -287,7 +288,7 @@ See the License for the specific language governing permissions and
287
  limitations under the License.
288
  ```
289
 
290
- ## 📚 Citation
291
 
292
  If you use this dataset in your research, please cite:
293
 
@@ -307,39 +308,40 @@ If you use this dataset in your research, please cite:
307
  @inproceedings{arabictext2025,
308
  title={ArabicText-Large: A Comprehensive 244M-Word Corpus for Arabic Language Model Training},
309
  author={Jaber, Jaber and Alkasasbeh, Bassam},
310
- booktitle={Proceedings of [Conference]},
311
  year={2025}
312
  }
313
  ```
314
 
315
- ## 🤝 Contributing
316
 
317
  We welcome community contributions:
318
 
319
- - **Bug Reports**: Report data quality issues
320
- - **Feature Requests**: Suggest improvements
321
- - **Pull Requests**: Contribute preprocessing enhancements
322
- - **Feedback**: Share your usage experience
323
 
324
- ## 📞 Contact
325
 
326
- For questions or collaborations, please open an issue on the repository.
327
 
328
  **Authors:**
329
  - Jaber Jaber
330
  - Bassam Alkasasbeh
331
 
332
- ## 🙏 Acknowledgments
333
 
334
- Special thanks to:
335
- - The Arabic NLP community for valuable feedback
336
- - Open-source contributors for tools and frameworks
337
- - Researchers and practitioners using this dataset
338
 
339
  ---
340
 
341
- **Dataset Homepage**: [ArabicText-Large](https://huggingface.co/datasets/Jr23xd23/ArabicText-Large)
342
  **License**: Apache 2.0
343
  **Authors**: Jaber Jaber, Bassam Alkasasbeh
 
344
 
345
- *Built for advancing Arabic NLP research and development* 🚀
 
32
  ![Words](https://img.shields.io/badge/Words-244M-orange)
33
  ![License](https://img.shields.io/badge/License-Apache%202.0-yellow)
34
 
35
+ ## Dataset Summary
36
 
37
  **ArabicText-Large** is a comprehensive, high-quality Arabic text corpus comprising **743,288 articles** with over **244 million words**, specifically curated for Large Language Model (LLM) training and fine-tuning. This dataset represents one of the largest publicly available Arabic text collections for machine learning research.
38
 
39
  This corpus addresses the critical shortage of high-quality Arabic NLP resources through rigorous preprocessing, quality filtering, and validation protocols.
40
 
41
+ ## Key Features
42
 
43
+ - **Massive Scale**: 743,288 articles with 244 million words
44
+ - **High Quality**: Multi-stage cleaning and quality filtering (average quality score: 58.3%)
45
+ - **LLM-Ready**: Optimized JSONL format for direct use in training pipelines
46
+ - **Diverse Content**: 9 major topic categories (History, Science, Geography, Biography, Arts, Politics, Religion, Sports)
47
+ - **Clean Text**: Professional removal of artifacts, references, and formatting noise
48
+ - **Modern Standard Arabic**: 94.2% Arabic content purity
49
+ - **Rich Vocabulary**: 1.5 million unique words
50
+ - **Open License**: Apache 2.0 for commercial and research use
51
 
52
+ ## Dataset Statistics
53
 
54
  | Metric | Value |
55
  |--------|-------|
 
64
  | **Dataset Size** | 2.8 GB (compressed) |
65
  | **Arabic Content Purity** | 94.2% |
66
 
67
+ ## Content Distribution
68
 
69
  | Topic Category | Articles | Percentage |
70
  |----------------|----------|------------|
 
78
  | Sports | 51,830 | 7.0% |
79
  | Other Topics | 22,298 | 3.0% |
80
 
81
+ ## Quality Assessment
82
 
83
  | Quality Tier | Articles | Percentage |
84
  |--------------|----------|------------|
 
89
  **Average Quality Score**: 58.3%
90
  **High-Quality Articles (≥60%)**: 58.7%
91
 
92
+ ## Usage
93
 
94
  ### Loading with Hugging Face Datasets
95
 
 
97
  from datasets import load_dataset
98
 
99
  # Load the dataset
100
+ dataset = load_dataset("Jr23xd23/ArabicText-Large")
101
 
102
  # Access the training split
103
  train_data = dataset["train"]
 
144
  }
145
  ```
146
 
147
+ ## Use Cases
148
 
149
  ### Language Model Pre-training
150
 
151
  - **BERT-style models**: Masked language modeling, text understanding
152
  - **GPT-style models**: Causal language modeling, text generation
153
+ - **T5-style models**: Encoder-decoder architectures, sequence-to-sequence tasks
154
+ - **Fine-tuning**: Domain adaptation for Arabic-specific applications
155
 
156
  ### Downstream NLP Tasks
157
 
158
+ - **Text Classification**: Sentiment analysis, topic classification, intent detection
159
  - **Named Entity Recognition**: Entity extraction and tagging
160
  - **Question Answering**: Reading comprehension, information retrieval
161
  - **Text Summarization**: Abstractive and extractive summarization
162
+ - **Machine Translation**: Arabic-English, Arabic-French, multilingual translation
163
+ - **Information Extraction**: Relationship extraction, knowledge graph construction
164
 
165
  ### Research Applications
166
 
 
168
  - Cross-lingual transfer learning
169
  - Multilingual model development
170
  - Low-resource language processing research
171
+ - Comparative studies of Semitic languages
172
 
173
+ ## Data Processing Pipeline
174
 
175
  Our multi-stage processing ensures the highest quality:
176
 
177
+ 1. **Source Collection**: Curated from reliable, peer-reviewed sources
178
+ 2. **Artifact Removal**: Eliminated references, citations, and navigation elements
179
+ 3. **Text Normalization**: Arabic-specific normalization (diacritics, punctuation, whitespace)
180
+ 4. **Quality Filtering**: Minimum 70% Arabic content, length constraints
181
+ 5. **Quality Scoring**: Multi-dimensional assessment (structure, linguistics, coherence)
182
+ 6. **Deduplication**: Hash-based exact matching + MinHash LSH for near-duplicate removal
183
+ 7. **Validation**: Format verification, encoding checks, statistical validation
184
 
185
  ### Quality Criteria
186
 
187
+ Articles are retained only if they meet all criteria:
188
+ - Minimum 100 characters, maximum 50,000 characters
189
+ - At least 70% Arabic characters
190
+ - Minimum 3 sentences for substantive content
191
+ - Quality score ≥40% on multi-dimensional assessment
192
+ - No stub indicators (e.g., "بحاجة للتوسيع")
193
 
194
+ ## Dataset Metrics
195
 
196
  ### Length Distributions
197
 
198
  **Article Lengths:**
199
+ - Minimum: 50 words
200
+ - Maximum: 20,757 words
201
  - Median: 106 words
202
  - Mean: 328.5 words
203
+ - Standard Deviation: 584.2 words
204
 
205
  **Sentence Lengths:**
206
+ - Minimum: 1 word
207
+ - Maximum: 247 words
208
  - Median: 16 words
209
  - Mean: 19.7 words
210
+ - Standard Deviation: 12.3 words
211
 
212
  **Word Lengths:**
213
+ - Minimum: 1 character
214
+ - Maximum: 42 characters
215
  - Median: 4 characters
216
  - Mean: 4.9 characters
217
+ - Standard Deviation: 2.8 characters
218
 
219
  ### Vocabulary Statistics
220
 
 
224
 
225
  **Most Frequent Words:**
226
 
227
+ | Rank | Word (Arabic) | Translation | Frequency | Percentage |
228
+ |------|---------------|-------------|-----------|------------|
229
  | 1 | في | in | 9,778,012 | 4.01% |
230
  | 2 | من | from | 7,346,952 | 3.01% |
231
  | 3 | على | on | 3,324,220 | 1.36% |
232
  | 4 | إلى | to | 2,453,720 | 1.01% |
233
  | 5 | أن | that | 1,595,356 | 0.65% |
234
 
235
+ ## Technical Specifications
236
 
237
  - **Format**: JSONL (JSON Lines)
238
  - **Encoding**: UTF-8
 
242
  - **License**: Apache 2.0
243
  - **Python Compatibility**: 3.7+
244
 
245
+ ## Comparison with Other Arabic Datasets
246
 
247
  | Dataset | Words | Articles | Domain | Quality | Year | License |
248
  |---------|-------|----------|--------|---------|------|---------|
249
+ | Arabic Gigaword | 848M | N/A | News | Moderate | 2011 | LDC |
250
+ | AraBERT Corpus | 70M | N/A | Mixed | Good | 2020 | MIT |
251
+ | OSCAR-Arabic | 22B | N/A | Web | Variable | 2019 | CC0 |
252
+ | mC4-Arabic | 42B | N/A | Web | Variable | 2021 | ODC-BY |
253
  | **ArabicText-Large** | **244M** | **743K** | **Encyclopedia** | **High** | **2025** | **Apache 2.0** |
254
 
255
+ ## Limitations
256
 
257
  - **Dialectal Coverage**: Primarily Modern Standard Arabic (MSA); limited dialectal variations
258
  - **Domain Bias**: Encyclopedic content may not represent colloquial or conversational Arabic
259
+ - **Temporal Coverage**: Content reflects knowledge up to dataset collection date (January 2025)
260
+ - **Size Trade-off**: Smaller than billion-word web corpora but prioritizes quality over quantity
261
 
262
+ ## Future Enhancements
263
 
264
  Planned improvements include:
265
  - Dialectal Arabic expansion (Egyptian, Levantine, Gulf, Maghrebi)
266
+ - Domain diversification (literature, technical documents, news, social media)
267
  - Parallel corpus creation (Arabic-English alignments)
268
  - Linguistic annotations (POS tags, NER, dependency parsing)
269
+ - Regular updates with new content and quality improvements
270
 
271
+ ## License
272
 
273
  This dataset is released under the **Apache License 2.0**.
274
 
 
288
  limitations under the License.
289
  ```
290
 
291
+ ## Citation
292
 
293
  If you use this dataset in your research, please cite:
294
 
 
308
  @inproceedings{arabictext2025,
309
  title={ArabicText-Large: A Comprehensive 244M-Word Corpus for Arabic Language Model Training},
310
  author={Jaber, Jaber and Alkasasbeh, Bassam},
311
+ booktitle={Proceedings of [Conference Name]},
312
  year={2025}
313
  }
314
  ```
315
 
316
+ ## Contributing
317
 
318
  We welcome community contributions:
319
 
320
+ - **Bug Reports**: Report data quality issues or inconsistencies
321
+ - **Feature Requests**: Suggest dataset improvements or extensions
322
+ - **Pull Requests**: Contribute preprocessing enhancements or tools
323
+ - **Feedback**: Share your usage experience and research outcomes
324
 
325
+ ## Contact
326
 
327
+ For questions, collaborations, or research inquiries, please open an issue on the repository.
328
 
329
  **Authors:**
330
  - Jaber Jaber
331
  - Bassam Alkasasbeh
332
 
333
+ ## Acknowledgments
334
 
335
+ We extend our gratitude to:
336
+ - The Arabic NLP research community for valuable feedback and insights
337
+ - Open-source contributors for tools and frameworks that made this work possible
338
+ - Researchers and practitioners using this dataset to advance Arabic language technologies
339
 
340
  ---
341
 
342
+ **Dataset Homepage**: [ArabicText-Large on Hugging Face](https://huggingface.co/datasets/Jr23xd23/ArabicText-Large)
343
  **License**: Apache 2.0
344
  **Authors**: Jaber Jaber, Bassam Alkasasbeh
345
+ **Year**: 2025
346
 
347
+ *Advancing Arabic NLP research and development*