Update README.md
Browse files
README.md
CHANGED
|
@@ -32,24 +32,24 @@ configs:
|
|
| 32 |

|
| 33 |

|
| 34 |
|
| 35 |
-
##
|
| 36 |
|
| 37 |
**ArabicText-Large** is a comprehensive, high-quality Arabic text corpus comprising **743,288 articles** with over **244 million words**, specifically curated for Large Language Model (LLM) training and fine-tuning. This dataset represents one of the largest publicly available Arabic text collections for machine learning research.
|
| 38 |
|
| 39 |
This corpus addresses the critical shortage of high-quality Arabic NLP resources through rigorous preprocessing, quality filtering, and validation protocols.
|
| 40 |
|
| 41 |
-
##
|
| 42 |
|
| 43 |
-
-
|
| 44 |
-
-
|
| 45 |
-
-
|
| 46 |
-
-
|
| 47 |
-
-
|
| 48 |
-
-
|
| 49 |
-
-
|
| 50 |
-
-
|
| 51 |
|
| 52 |
-
##
|
| 53 |
|
| 54 |
| Metric | Value |
|
| 55 |
|--------|-------|
|
|
@@ -64,7 +64,7 @@ This corpus addresses the critical shortage of high-quality Arabic NLP resources
|
|
| 64 |
| **Dataset Size** | 2.8 GB (compressed) |
|
| 65 |
| **Arabic Content Purity** | 94.2% |
|
| 66 |
|
| 67 |
-
##
|
| 68 |
|
| 69 |
| Topic Category | Articles | Percentage |
|
| 70 |
|----------------|----------|------------|
|
|
@@ -78,7 +78,7 @@ This corpus addresses the critical shortage of high-quality Arabic NLP resources
|
|
| 78 |
| Sports | 51,830 | 7.0% |
|
| 79 |
| Other Topics | 22,298 | 3.0% |
|
| 80 |
|
| 81 |
-
##
|
| 82 |
|
| 83 |
| Quality Tier | Articles | Percentage |
|
| 84 |
|--------------|----------|------------|
|
|
@@ -89,7 +89,7 @@ This corpus addresses the critical shortage of high-quality Arabic NLP resources
|
|
| 89 |
**Average Quality Score**: 58.3%
|
| 90 |
**High-Quality Articles (≥60%)**: 58.7%
|
| 91 |
|
| 92 |
-
##
|
| 93 |
|
| 94 |
### Loading with Hugging Face Datasets
|
| 95 |
|
|
@@ -97,7 +97,7 @@ This corpus addresses the critical shortage of high-quality Arabic NLP resources
|
|
| 97 |
from datasets import load_dataset
|
| 98 |
|
| 99 |
# Load the dataset
|
| 100 |
-
dataset = load_dataset("
|
| 101 |
|
| 102 |
# Access the training split
|
| 103 |
train_data = dataset["train"]
|
|
@@ -144,23 +144,23 @@ Each entry in the dataset follows this structure:
|
|
| 144 |
}
|
| 145 |
```
|
| 146 |
|
| 147 |
-
##
|
| 148 |
|
| 149 |
### Language Model Pre-training
|
| 150 |
|
| 151 |
- **BERT-style models**: Masked language modeling, text understanding
|
| 152 |
- **GPT-style models**: Causal language modeling, text generation
|
| 153 |
-
- **T5-style models**: Encoder-decoder architectures,
|
| 154 |
-
- **Fine-tuning**: Domain adaptation for Arabic-specific
|
| 155 |
|
| 156 |
### Downstream NLP Tasks
|
| 157 |
|
| 158 |
-
- **Text Classification**: Sentiment analysis, topic classification
|
| 159 |
- **Named Entity Recognition**: Entity extraction and tagging
|
| 160 |
- **Question Answering**: Reading comprehension, information retrieval
|
| 161 |
- **Text Summarization**: Abstractive and extractive summarization
|
| 162 |
-
- **Machine Translation**: Arabic-English, Arabic-French translation
|
| 163 |
-
- **Information Extraction**: Relationship extraction, knowledge
|
| 164 |
|
| 165 |
### Research Applications
|
| 166 |
|
|
@@ -168,52 +168,53 @@ Each entry in the dataset follows this structure:
|
|
| 168 |
- Cross-lingual transfer learning
|
| 169 |
- Multilingual model development
|
| 170 |
- Low-resource language processing research
|
|
|
|
| 171 |
|
| 172 |
-
##
|
| 173 |
|
| 174 |
Our multi-stage processing ensures the highest quality:
|
| 175 |
|
| 176 |
-
1.
|
| 177 |
-
2.
|
| 178 |
-
3.
|
| 179 |
-
4.
|
| 180 |
-
5.
|
| 181 |
-
6.
|
| 182 |
-
7.
|
| 183 |
|
| 184 |
### Quality Criteria
|
| 185 |
|
| 186 |
-
Articles are retained only if they meet:
|
| 187 |
-
-
|
| 188 |
-
-
|
| 189 |
-
-
|
| 190 |
-
-
|
| 191 |
-
-
|
| 192 |
|
| 193 |
-
##
|
| 194 |
|
| 195 |
### Length Distributions
|
| 196 |
|
| 197 |
**Article Lengths:**
|
| 198 |
-
-
|
| 199 |
-
-
|
| 200 |
- Median: 106 words
|
| 201 |
- Mean: 328.5 words
|
| 202 |
-
-
|
| 203 |
|
| 204 |
**Sentence Lengths:**
|
| 205 |
-
-
|
| 206 |
-
-
|
| 207 |
- Median: 16 words
|
| 208 |
- Mean: 19.7 words
|
| 209 |
-
-
|
| 210 |
|
| 211 |
**Word Lengths:**
|
| 212 |
-
-
|
| 213 |
-
-
|
| 214 |
- Median: 4 characters
|
| 215 |
- Mean: 4.9 characters
|
| 216 |
-
-
|
| 217 |
|
| 218 |
### Vocabulary Statistics
|
| 219 |
|
|
@@ -223,15 +224,15 @@ Articles are retained only if they meet:
|
|
| 223 |
|
| 224 |
**Most Frequent Words:**
|
| 225 |
|
| 226 |
-
| Rank | Word (Arabic) | Translation | Frequency |
|
| 227 |
-
|
| 228 |
| 1 | في | in | 9,778,012 | 4.01% |
|
| 229 |
| 2 | من | from | 7,346,952 | 3.01% |
|
| 230 |
| 3 | على | on | 3,324,220 | 1.36% |
|
| 231 |
| 4 | إلى | to | 2,453,720 | 1.01% |
|
| 232 |
| 5 | أن | that | 1,595,356 | 0.65% |
|
| 233 |
|
| 234 |
-
##
|
| 235 |
|
| 236 |
- **Format**: JSONL (JSON Lines)
|
| 237 |
- **Encoding**: UTF-8
|
|
@@ -241,33 +242,33 @@ Articles are retained only if they meet:
|
|
| 241 |
- **License**: Apache 2.0
|
| 242 |
- **Python Compatibility**: 3.7+
|
| 243 |
|
| 244 |
-
##
|
| 245 |
|
| 246 |
| Dataset | Words | Articles | Domain | Quality | Year | License |
|
| 247 |
|---------|-------|----------|--------|---------|------|---------|
|
| 248 |
-
| Arabic Gigaword | 848M |
|
| 249 |
-
| AraBERT Corpus | 70M |
|
| 250 |
-
| OSCAR-Arabic | 22B |
|
| 251 |
-
| mC4-Arabic | 42B |
|
| 252 |
| **ArabicText-Large** | **244M** | **743K** | **Encyclopedia** | **High** | **2025** | **Apache 2.0** |
|
| 253 |
|
| 254 |
-
##
|
| 255 |
|
| 256 |
- **Dialectal Coverage**: Primarily Modern Standard Arabic (MSA); limited dialectal variations
|
| 257 |
- **Domain Bias**: Encyclopedic content may not represent colloquial or conversational Arabic
|
| 258 |
-
- **Temporal Coverage**: Content reflects knowledge up to dataset collection date (2025)
|
| 259 |
-
- **Size Trade-off**: Smaller than billion-word web corpora but
|
| 260 |
|
| 261 |
-
##
|
| 262 |
|
| 263 |
Planned improvements include:
|
| 264 |
- Dialectal Arabic expansion (Egyptian, Levantine, Gulf, Maghrebi)
|
| 265 |
-
- Domain diversification (literature, technical documents, news)
|
| 266 |
- Parallel corpus creation (Arabic-English alignments)
|
| 267 |
- Linguistic annotations (POS tags, NER, dependency parsing)
|
| 268 |
-
- Regular updates with new content
|
| 269 |
|
| 270 |
-
##
|
| 271 |
|
| 272 |
This dataset is released under the **Apache License 2.0**.
|
| 273 |
|
|
@@ -287,7 +288,7 @@ See the License for the specific language governing permissions and
|
|
| 287 |
limitations under the License.
|
| 288 |
```
|
| 289 |
|
| 290 |
-
##
|
| 291 |
|
| 292 |
If you use this dataset in your research, please cite:
|
| 293 |
|
|
@@ -307,39 +308,40 @@ If you use this dataset in your research, please cite:
|
|
| 307 |
@inproceedings{arabictext2025,
|
| 308 |
title={ArabicText-Large: A Comprehensive 244M-Word Corpus for Arabic Language Model Training},
|
| 309 |
author={Jaber, Jaber and Alkasasbeh, Bassam},
|
| 310 |
-
booktitle={Proceedings of [Conference]},
|
| 311 |
year={2025}
|
| 312 |
}
|
| 313 |
```
|
| 314 |
|
| 315 |
-
##
|
| 316 |
|
| 317 |
We welcome community contributions:
|
| 318 |
|
| 319 |
-
- **Bug Reports**: Report data quality issues
|
| 320 |
-
- **Feature Requests**: Suggest improvements
|
| 321 |
-
- **Pull Requests**: Contribute preprocessing enhancements
|
| 322 |
-
- **Feedback**: Share your usage experience
|
| 323 |
|
| 324 |
-
##
|
| 325 |
|
| 326 |
-
For questions or
|
| 327 |
|
| 328 |
**Authors:**
|
| 329 |
- Jaber Jaber
|
| 330 |
- Bassam Alkasasbeh
|
| 331 |
|
| 332 |
-
##
|
| 333 |
|
| 334 |
-
|
| 335 |
-
- The Arabic NLP community for valuable feedback
|
| 336 |
-
- Open-source contributors for tools and frameworks
|
| 337 |
-
- Researchers and practitioners using this dataset
|
| 338 |
|
| 339 |
---
|
| 340 |
|
| 341 |
-
**Dataset Homepage**: [ArabicText-Large](https://huggingface.co/datasets/Jr23xd23/ArabicText-Large)
|
| 342 |
**License**: Apache 2.0
|
| 343 |
**Authors**: Jaber Jaber, Bassam Alkasasbeh
|
|
|
|
| 344 |
|
| 345 |
-
*
|
|
|
|
| 32 |

|
| 33 |

|
| 34 |
|
| 35 |
+
## Dataset Summary
|
| 36 |
|
| 37 |
**ArabicText-Large** is a comprehensive, high-quality Arabic text corpus comprising **743,288 articles** with over **244 million words**, specifically curated for Large Language Model (LLM) training and fine-tuning. This dataset represents one of the largest publicly available Arabic text collections for machine learning research.
|
| 38 |
|
| 39 |
This corpus addresses the critical shortage of high-quality Arabic NLP resources through rigorous preprocessing, quality filtering, and validation protocols.
|
| 40 |
|
| 41 |
+
## Key Features
|
| 42 |
|
| 43 |
+
- **Massive Scale**: 743,288 articles with 244 million words
|
| 44 |
+
- **High Quality**: Multi-stage cleaning and quality filtering (average quality score: 58.3%)
|
| 45 |
+
- **LLM-Ready**: Optimized JSONL format for direct use in training pipelines
|
| 46 |
+
- **Diverse Content**: 9 major topic categories (History, Science, Geography, Biography, Arts, Politics, Religion, Sports)
|
| 47 |
+
- **Clean Text**: Professional removal of artifacts, references, and formatting noise
|
| 48 |
+
- **Modern Standard Arabic**: 94.2% Arabic content purity
|
| 49 |
+
- **Rich Vocabulary**: 1.5 million unique words
|
| 50 |
+
- **Open License**: Apache 2.0 for commercial and research use
|
| 51 |
|
| 52 |
+
## Dataset Statistics
|
| 53 |
|
| 54 |
| Metric | Value |
|
| 55 |
|--------|-------|
|
|
|
|
| 64 |
| **Dataset Size** | 2.8 GB (compressed) |
|
| 65 |
| **Arabic Content Purity** | 94.2% |
|
| 66 |
|
| 67 |
+
## Content Distribution
|
| 68 |
|
| 69 |
| Topic Category | Articles | Percentage |
|
| 70 |
|----------------|----------|------------|
|
|
|
|
| 78 |
| Sports | 51,830 | 7.0% |
|
| 79 |
| Other Topics | 22,298 | 3.0% |
|
| 80 |
|
| 81 |
+
## Quality Assessment
|
| 82 |
|
| 83 |
| Quality Tier | Articles | Percentage |
|
| 84 |
|--------------|----------|------------|
|
|
|
|
| 89 |
**Average Quality Score**: 58.3%
|
| 90 |
**High-Quality Articles (≥60%)**: 58.7%
|
| 91 |
|
| 92 |
+
## Usage
|
| 93 |
|
| 94 |
### Loading with Hugging Face Datasets
|
| 95 |
|
|
|
|
| 97 |
from datasets import load_dataset
|
| 98 |
|
| 99 |
# Load the dataset
|
| 100 |
+
dataset = load_dataset("Jr23xd23/ArabicText-Large")
|
| 101 |
|
| 102 |
# Access the training split
|
| 103 |
train_data = dataset["train"]
|
|
|
|
| 144 |
}
|
| 145 |
```
|
| 146 |
|
| 147 |
+
## Use Cases
|
| 148 |
|
| 149 |
### Language Model Pre-training
|
| 150 |
|
| 151 |
- **BERT-style models**: Masked language modeling, text understanding
|
| 152 |
- **GPT-style models**: Causal language modeling, text generation
|
| 153 |
+
- **T5-style models**: Encoder-decoder architectures, sequence-to-sequence tasks
|
| 154 |
+
- **Fine-tuning**: Domain adaptation for Arabic-specific applications
|
| 155 |
|
| 156 |
### Downstream NLP Tasks
|
| 157 |
|
| 158 |
+
- **Text Classification**: Sentiment analysis, topic classification, intent detection
|
| 159 |
- **Named Entity Recognition**: Entity extraction and tagging
|
| 160 |
- **Question Answering**: Reading comprehension, information retrieval
|
| 161 |
- **Text Summarization**: Abstractive and extractive summarization
|
| 162 |
+
- **Machine Translation**: Arabic-English, Arabic-French, multilingual translation
|
| 163 |
+
- **Information Extraction**: Relationship extraction, knowledge graph construction
|
| 164 |
|
| 165 |
### Research Applications
|
| 166 |
|
|
|
|
| 168 |
- Cross-lingual transfer learning
|
| 169 |
- Multilingual model development
|
| 170 |
- Low-resource language processing research
|
| 171 |
+
- Comparative studies of Semitic languages
|
| 172 |
|
| 173 |
+
## Data Processing Pipeline
|
| 174 |
|
| 175 |
Our multi-stage processing ensures the highest quality:
|
| 176 |
|
| 177 |
+
1. **Source Collection**: Curated from reliable, peer-reviewed sources
|
| 178 |
+
2. **Artifact Removal**: Eliminated references, citations, and navigation elements
|
| 179 |
+
3. **Text Normalization**: Arabic-specific normalization (diacritics, punctuation, whitespace)
|
| 180 |
+
4. **Quality Filtering**: Minimum 70% Arabic content, length constraints
|
| 181 |
+
5. **Quality Scoring**: Multi-dimensional assessment (structure, linguistics, coherence)
|
| 182 |
+
6. **Deduplication**: Hash-based exact matching + MinHash LSH for near-duplicate removal
|
| 183 |
+
7. **Validation**: Format verification, encoding checks, statistical validation
|
| 184 |
|
| 185 |
### Quality Criteria
|
| 186 |
|
| 187 |
+
Articles are retained only if they meet all criteria:
|
| 188 |
+
- Minimum 100 characters, maximum 50,000 characters
|
| 189 |
+
- At least 70% Arabic characters
|
| 190 |
+
- Minimum 3 sentences for substantive content
|
| 191 |
+
- Quality score ≥40% on multi-dimensional assessment
|
| 192 |
+
- No stub indicators (e.g., "بحاجة للتوسيع")
|
| 193 |
|
| 194 |
+
## Dataset Metrics
|
| 195 |
|
| 196 |
### Length Distributions
|
| 197 |
|
| 198 |
**Article Lengths:**
|
| 199 |
+
- Minimum: 50 words
|
| 200 |
+
- Maximum: 20,757 words
|
| 201 |
- Median: 106 words
|
| 202 |
- Mean: 328.5 words
|
| 203 |
+
- Standard Deviation: 584.2 words
|
| 204 |
|
| 205 |
**Sentence Lengths:**
|
| 206 |
+
- Minimum: 1 word
|
| 207 |
+
- Maximum: 247 words
|
| 208 |
- Median: 16 words
|
| 209 |
- Mean: 19.7 words
|
| 210 |
+
- Standard Deviation: 12.3 words
|
| 211 |
|
| 212 |
**Word Lengths:**
|
| 213 |
+
- Minimum: 1 character
|
| 214 |
+
- Maximum: 42 characters
|
| 215 |
- Median: 4 characters
|
| 216 |
- Mean: 4.9 characters
|
| 217 |
+
- Standard Deviation: 2.8 characters
|
| 218 |
|
| 219 |
### Vocabulary Statistics
|
| 220 |
|
|
|
|
| 224 |
|
| 225 |
**Most Frequent Words:**
|
| 226 |
|
| 227 |
+
| Rank | Word (Arabic) | Translation | Frequency | Percentage |
|
| 228 |
+
|------|---------------|-------------|-----------|------------|
|
| 229 |
| 1 | في | in | 9,778,012 | 4.01% |
|
| 230 |
| 2 | من | from | 7,346,952 | 3.01% |
|
| 231 |
| 3 | على | on | 3,324,220 | 1.36% |
|
| 232 |
| 4 | إلى | to | 2,453,720 | 1.01% |
|
| 233 |
| 5 | أن | that | 1,595,356 | 0.65% |
|
| 234 |
|
| 235 |
+
## Technical Specifications
|
| 236 |
|
| 237 |
- **Format**: JSONL (JSON Lines)
|
| 238 |
- **Encoding**: UTF-8
|
|
|
|
| 242 |
- **License**: Apache 2.0
|
| 243 |
- **Python Compatibility**: 3.7+
|
| 244 |
|
| 245 |
+
## Comparison with Other Arabic Datasets
|
| 246 |
|
| 247 |
| Dataset | Words | Articles | Domain | Quality | Year | License |
|
| 248 |
|---------|-------|----------|--------|---------|------|---------|
|
| 249 |
+
| Arabic Gigaword | 848M | N/A | News | Moderate | 2011 | LDC |
|
| 250 |
+
| AraBERT Corpus | 70M | N/A | Mixed | Good | 2020 | MIT |
|
| 251 |
+
| OSCAR-Arabic | 22B | N/A | Web | Variable | 2019 | CC0 |
|
| 252 |
+
| mC4-Arabic | 42B | N/A | Web | Variable | 2021 | ODC-BY |
|
| 253 |
| **ArabicText-Large** | **244M** | **743K** | **Encyclopedia** | **High** | **2025** | **Apache 2.0** |
|
| 254 |
|
| 255 |
+
## Limitations
|
| 256 |
|
| 257 |
- **Dialectal Coverage**: Primarily Modern Standard Arabic (MSA); limited dialectal variations
|
| 258 |
- **Domain Bias**: Encyclopedic content may not represent colloquial or conversational Arabic
|
| 259 |
+
- **Temporal Coverage**: Content reflects knowledge up to dataset collection date (January 2025)
|
| 260 |
+
- **Size Trade-off**: Smaller than billion-word web corpora but prioritizes quality over quantity
|
| 261 |
|
| 262 |
+
## Future Enhancements
|
| 263 |
|
| 264 |
Planned improvements include:
|
| 265 |
- Dialectal Arabic expansion (Egyptian, Levantine, Gulf, Maghrebi)
|
| 266 |
+
- Domain diversification (literature, technical documents, news, social media)
|
| 267 |
- Parallel corpus creation (Arabic-English alignments)
|
| 268 |
- Linguistic annotations (POS tags, NER, dependency parsing)
|
| 269 |
+
- Regular updates with new content and quality improvements
|
| 270 |
|
| 271 |
+
## License
|
| 272 |
|
| 273 |
This dataset is released under the **Apache License 2.0**.
|
| 274 |
|
|
|
|
| 288 |
limitations under the License.
|
| 289 |
```
|
| 290 |
|
| 291 |
+
## Citation
|
| 292 |
|
| 293 |
If you use this dataset in your research, please cite:
|
| 294 |
|
|
|
|
| 308 |
@inproceedings{arabictext2025,
|
| 309 |
title={ArabicText-Large: A Comprehensive 244M-Word Corpus for Arabic Language Model Training},
|
| 310 |
author={Jaber, Jaber and Alkasasbeh, Bassam},
|
| 311 |
+
booktitle={Proceedings of [Conference Name]},
|
| 312 |
year={2025}
|
| 313 |
}
|
| 314 |
```
|
| 315 |
|
| 316 |
+
## Contributing
|
| 317 |
|
| 318 |
We welcome community contributions:
|
| 319 |
|
| 320 |
+
- **Bug Reports**: Report data quality issues or inconsistencies
|
| 321 |
+
- **Feature Requests**: Suggest dataset improvements or extensions
|
| 322 |
+
- **Pull Requests**: Contribute preprocessing enhancements or tools
|
| 323 |
+
- **Feedback**: Share your usage experience and research outcomes
|
| 324 |
|
| 325 |
+
## Contact
|
| 326 |
|
| 327 |
+
For questions, collaborations, or research inquiries, please open an issue on the repository.
|
| 328 |
|
| 329 |
**Authors:**
|
| 330 |
- Jaber Jaber
|
| 331 |
- Bassam Alkasasbeh
|
| 332 |
|
| 333 |
+
## Acknowledgments
|
| 334 |
|
| 335 |
+
We extend our gratitude to:
|
| 336 |
+
- The Arabic NLP research community for valuable feedback and insights
|
| 337 |
+
- Open-source contributors for tools and frameworks that made this work possible
|
| 338 |
+
- Researchers and practitioners using this dataset to advance Arabic language technologies
|
| 339 |
|
| 340 |
---
|
| 341 |
|
| 342 |
+
**Dataset Homepage**: [ArabicText-Large on Hugging Face](https://huggingface.co/datasets/Jr23xd23/ArabicText-Large)
|
| 343 |
**License**: Apache 2.0
|
| 344 |
**Authors**: Jaber Jaber, Bassam Alkasasbeh
|
| 345 |
+
**Year**: 2025
|
| 346 |
|
| 347 |
+
*Advancing Arabic NLP research and development*
|