Jybbs commited on
Commit
e7d4fc2
·
verified ·
1 Parent(s): 7dc71aa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -3
README.md CHANGED
@@ -1,3 +1,135 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ pretty_name: Thermur WRF-SFIRE Sample Data
4
+ tags:
5
+ - wildfire
6
+ - simulation
7
+ - climate
8
+ - fire-dynamics
9
+ - wrf-sfire
10
+ size_categories:
11
+ - n<1K
12
+ ---
13
+
14
+ # Dataset Card for Thermur WRF-SFIRE Sample Data
15
+
16
+ This dataset provides a sample from the Moisseeva (2020) WRF-SFIRE LES Synthetic Wildfire Plume Dataset, specifically curated for development and testing of the Thermur project - an imitation learning system for coordinating drone swarms in wildfire monitoring scenarios.
17
+
18
+ ## Dataset Details
19
+
20
+ ### Dataset Description
21
+
22
+ This sample contains a representative slice of high-fidelity wildfire simulation data, capturing active fire spread with well-developed plume dynamics. The data represents minutes 3-4 of a 20-minute simulation, providing realistic thermal gradients and turbulence patterns essential for algorithm development.
23
+
24
+ - **Curated by:** Thermur Project Contributors
25
+ - **Original data by:** Nadya Moisseeva and Roland Stull (2020)
26
+ - **Language(s) (NLP):** Not applicable (numerical simulation data)
27
+ - **License:** CC-BY-4.0 (following original dataset license)
28
+
29
+ ### Dataset Sources
30
+
31
+ - **Repository:** [Thermur Project](https://github.com/YOUR_USERNAME/Thermur)
32
+ - **Paper:** [Original dataset publication](https://doi.org/10.20383/102.0314)
33
+ - **Full dataset:** [FRDR Repository](https://www.frdr-dfdr.ca/repo/dataset/uuid:8f2e7e7a-5a95-4d5a-a93e-80e9e4f8f8f8)
34
+
35
+ ## Uses
36
+
37
+ ### Direct Use
38
+
39
+ This dataset is intended for:
40
+ - **Algorithm development**: Testing thermal navigation algorithms for autonomous agents
41
+ - **Visualization development**: Creating 3D renderings of fire plumes and thermal fields
42
+ - **Machine learning**: Training models to predict safe flight paths through fire environments
43
+ - **Education**: Understanding wildfire dynamics and plume behavior
44
+
45
+ ### Out-of-Scope Use
46
+
47
+ This dataset should **not** be used for:
48
+ - Real-time wildfire response without validation on current conditions
49
+ - Direct deployment to production drone systems without extensive testing
50
+ - Climate modeling (single scenario only)
51
+ - Predictive modeling of actual wildfire events
52
+
53
+ ## Dataset Structure
54
+
55
+ The dataset contains a single NetCDF file (`samples.tar.gz` → `data/samples/wrf_sample.nc`) with the following structure:
56
+
57
+ ```
58
+ Dimensions:
59
+ Time: 4 (timesteps at 15-second intervals)
60
+ bottom_top: 50 (vertical levels)
61
+ south_north: 250 (y-direction, 10 km)
62
+ west_east: 500 (x-direction, 20 km)
63
+
64
+ Variables:
65
+ - U, V, W: 3D wind velocity components (m/s)
66
+ - T: Perturbation potential temperature (K)
67
+ - P, PB: Perturbation and base pressure (Pa)
68
+ - QVAPOR: Water vapor mixing ratio (kg/kg)
69
+ - GRNHFX: Ground heat flux from fire (W/m²)
70
+ - FGRNHFX: Fine-mesh ground heat flux (W/m²)
71
+ - tr17_1: PM2.5-like passive tracer (μg/kg)
72
+ ```
73
+
74
+ ### Physical Scenario
75
+
76
+ **Moderate-intensity wildfire**:
77
+ - Wind: 5 m/s uniform horizontal (moderate breeze)
78
+ - Fuel: Southern rough (dense brushy understory)
79
+ - Fire intensity: ~10-20 MW/m fireline
80
+ - Domain: 10 km × 20 km × 3 km
81
+ - Resolution: 40 m horizontal, 4 m fire mesh
82
+
83
+ ## Dataset Creation
84
+
85
+ ### Curation Rationale
86
+
87
+ This sample was extracted to provide a manageable dataset (468 MB) that still captures the essential complexity of wildfire plume dynamics. The selected timeframe (minutes 3-4) represents established fire behavior with active spread and well-developed thermal structures.
88
+
89
+ ### Source Data
90
+
91
+ #### Data Collection and Processing
92
+
93
+ The data comes from Large Eddy Simulations (LES) using WRF-SFIRE, a coupled atmosphere-fire modeling system. The original simulation:
94
+ - Used real atmospheric profiles from North American soundings
95
+ - Implemented Anderson fuel models for realistic fire behavior
96
+ - Ran at 40m atmospheric resolution with 4m fire mesh refinement
97
+
98
+ #### Who are the source data producers?
99
+
100
+ Original simulations by Nadya Moisseeva and Roland Stull at the University of British Columbia, using WRF-SFIRE developed by NCAR and University of Colorado Denver.
101
+
102
+ ## Bias, Risks, and Limitations
103
+
104
+ - **Single scenario**: This sample represents only one of 147 available scenarios
105
+ - **Idealized conditions**: Simulations use simplified terrain (flat) and uniform fuels
106
+ - **Temporal snapshot**: Only 1 minute of a 20-minute simulation
107
+ - **Model limitations**: LES approximations may not capture all fine-scale turbulence
108
+
109
+ ### Recommendations
110
+
111
+ - Use this data for algorithm development and testing only
112
+ - Validate algorithms on multiple scenarios before deployment
113
+ - Consider environmental variability not captured in this single sample
114
+ - Combine with real-world data when available
115
+
116
+ ## Citation
117
+
118
+ **BibTeX:**
119
+ ```bibtex
120
+ @dataset{moisseeva2020wrfsfire,
121
+ author = {Moisseeva, Nadya and Stull, Roland},
122
+ title = {WRF-SFIRE LES Synthetic Wildfire Plume Dataset},
123
+ year = {2020},
124
+ publisher = {Federated Research Data Repository},
125
+ doi = {10.20383/102.0314},
126
+ url = {https://doi.org/10.20383/102.0314}
127
+ }
128
+ ```
129
+
130
+ **APA:**
131
+ Moisseeva, N., & Stull, R. (2020). WRF-SFIRE LES Synthetic Wildfire Plume Dataset. Federated Research Data Repository. https://doi.org/10.20383/102.0314
132
+
133
+ ## More Information
134
+
135
+ For detailed variable descriptions, safety thresholds, and processing examples, see the full README included in the tar.gz file. The Thermur project documentation provides extensive examples of using this data for drone swarm coordination algorithms.