CUB-200 / CUB-200.py
KAKIZHOU's picture
Update CUB-200.py
dbe9f29 verified
import os
import datasets
from datasets import DatasetInfo, DownloadManager, Image
import pickle
import random
from tqdm import tqdm
#from PIL import Image
_URLS = {
"train": "train/filenames.pickle",
"test": "test/filenames.pickle",
"images": "images.zip",
"text": "text.zip",
}
class CUB200Dataset(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
# add number before name for sorting
datasets.BuilderConfig(name="full"),
]
def _info(self) -> DatasetInfo:
features = {
"image": datasets.Image(),
"text": datasets.Value("string")
}
info = datasets.DatasetInfo(
features=datasets.Features(features),
supervised_keys=None,
citation="",
)
return info
def _split_generators(self, dl_manager: DownloadManager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_path": downloaded_files["train"],"images_path":downloaded_files["images"]+"/images","text_path":downloaded_files["text"]+"/text"}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_path": downloaded_files["test"],"images_path":downloaded_files["images"]+"/images","text_path":downloaded_files["text"]+"/text"}),
]
def _generate_examples(self, file_path, images_path, text_path):
name_list = pickle.load(open(file_path, "rb"), encoding="bytes")
sum = len(name_list)
for index in tqdm(range(sum)):
name = name_list[index]
this_text_path = os.path.join(text_path, name+".txt")
with open(this_text_path, "r") as f:
caption = random.choice(f.readlines()).replace("\n", "").lower()
image = Image().encode_example(os.path.join(images_path, name+".jpg"))
yield index, {
"image": image,
"text": caption,
}