import os import datasets from datasets import DatasetInfo, DownloadManager, Image import pickle import random from tqdm import tqdm #from PIL import Image _URLS = { "train": "train/filenames.pickle", "test": "test/filenames.pickle", "images": "images.zip", "text": "text.zip", } class CUB200Dataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ # add number before name for sorting datasets.BuilderConfig(name="full"), ] def _info(self) -> DatasetInfo: features = { "image": datasets.Image(), "text": datasets.Value("string") } info = datasets.DatasetInfo( features=datasets.Features(features), supervised_keys=None, citation="", ) return info def _split_generators(self, dl_manager: DownloadManager): downloaded_files = dl_manager.download_and_extract(_URLS) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_path": downloaded_files["train"],"images_path":downloaded_files["images"]+"/images","text_path":downloaded_files["text"]+"/text"}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_path": downloaded_files["test"],"images_path":downloaded_files["images"]+"/images","text_path":downloaded_files["text"]+"/text"}), ] def _generate_examples(self, file_path, images_path, text_path): name_list = pickle.load(open(file_path, "rb"), encoding="bytes") sum = len(name_list) for index in tqdm(range(sum)): name = name_list[index] this_text_path = os.path.join(text_path, name+".txt") with open(this_text_path, "r") as f: caption = random.choice(f.readlines()).replace("\n", "").lower() image = Image().encode_example(os.path.join(images_path, name+".jpg")) yield index, { "image": image, "text": caption, }