# coding=utf-8 # persian-conversational-dataset """TODO(empathetic_dialogues): Add a description here.""" import csv import json import datasets from datasets.tasks import QuestionAnsweringExtractive logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """\ persian-conversational-dataset """ _URL = "https://huggingface.co/datasets/Kamtera/Persian-conversational-dataset/blob/main/" _URLS = [ "dadrah_dataset.json", "dadrah_dataset1-1000_10000.json", "dadrah_dataset1-10000_100000.json", "dadrah_dataset1-100000_276342.json", ] class persianConversation(datasets.GeneratorBasedBuilder): # VERSION = datasets.Version("0.1.0") def _info(self): # TODO(empathetic_dialogues): Specifies the datasets.DatasetInfo object return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "title": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.Sequence(datasets.Value("string")), "keywords": datasets.Sequence(datasets.Value("string")), # These are the features of your dataset like images, labels ... } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO(empathetic_dialogues): Downloads the data and defines the splits # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs downloaded_files = dl_manager.download(_URLS) logger.info("| > downloaded files") logger.info(downloaded_files) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "files": downloaded_files[1:], "split_file": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "files": downloaded_files[0:1], "split_file": "test" }, ), ] def _generate_examples(self, files, split_file): """Yields examples.""" import json logger.info("| > generate examples for "+split_file) logger.info(files) for path in files: with open(path, 'r', encoding='utf-8') as fmm: data=json.load(fmm) for id_, row in enumerate(data): title=row[0] question=row[1] answers=row[2] keywords=row[3] yield id_, { "title": title, "question": question, "answers": answers, "keywords": keywords, }