| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						import pandas as pd | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						from pathlib import Path | 
					
					
						
						| 
							 | 
						from tqdm import tqdm | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						print("✅ Custom Causal3D loaded: outside Causal3D.py") | 
					
					
						
						| 
							 | 
						_CITATION = """\ | 
					
					
						
						| 
							 | 
						@article{liu2025causal3d, | 
					
					
						
						| 
							 | 
						  title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data}, | 
					
					
						
						| 
							 | 
						  author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing}, | 
					
					
						
						| 
							 | 
						  journal={arXiv preprint arXiv:2503.04852}, | 
					
					
						
						| 
							 | 
						  year={2025} | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_DESCRIPTION = """\ | 
					
					
						
						| 
							 | 
						Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes.  | 
					
					
						
						| 
							 | 
						It includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D" | 
					
					
						
						| 
							 | 
						_LICENSE = "CC-BY-4.0" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Causal3D(datasets.GeneratorBasedBuilder): | 
					
					
						
						| 
							 | 
						    DEFAULT_CONFIG_NAME = "real_scenes_Water_flow_scene_render" | 
					
					
						
						| 
							 | 
						    BUILDER_CONFIGS = [ | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_linear scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_nonlinear scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v3_fully_connected_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v3_fully_connected_linear scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_full_connected scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_v scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_nonlinear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_nonlinear_v scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear_full_connected scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_linear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_linear_128P scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_nonlinear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_nonlinear_128P scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="hypothetical_scenes_rendered_h5_nonlinear", version=datasets.Version("1.0.0"), description="rendered_h5_nonlinear scene"), | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"), | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_real_pendulum", version=datasets.Version("1.0.0"), description="real_pendulum scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_rendered_magnetic_128", version=datasets.Version("1.0.0"), description="rendered_magnetic_128 scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_rendered_reflection_128P", version=datasets.Version("1.0.0"), description="rendered_reflection_128P scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_seesaw_scene_128P", version=datasets.Version("1.0.0"), description="seesaw_scene_128P scene"), | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="real_scenes_spring_scene_128P", version=datasets.Version("1.0.0"), description="spring_scene_128P scene"), | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _info(self): | 
					
					
						
						| 
							 | 
						        return datasets.DatasetInfo( | 
					
					
						
						| 
							 | 
						            description=_DESCRIPTION, | 
					
					
						
						| 
							 | 
						            features=datasets.Features({ | 
					
					
						
						| 
							 | 
						                "image": datasets.Image(), | 
					
					
						
						| 
							 | 
						                "file_name": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "metadata": datasets.Value("string"),   | 
					
					
						
						| 
							 | 
						            }), | 
					
					
						
						| 
							 | 
						            homepage=_HOMEPAGE, | 
					
					
						
						| 
							 | 
						            license=_LICENSE, | 
					
					
						
						| 
							 | 
						            citation=_CITATION, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def _split_generators(self, dl_manager): | 
					
					
						
						| 
							 | 
						        parts = self.config.name.split("_", 2) | 
					
					
						
						| 
							 | 
						        category = parts[0] + "_" + parts[1]   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if category not in ["real_scenes", "hypothetical_scenes"]: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"Invalid category '{category}'. Must be one of ['real_scenes', 'hypothetical_scenes']") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        scene = parts[2] | 
					
					
						
						| 
							 | 
						        data_dir = os.path.join(category, scene) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return [ | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                name=datasets.Split.TRAIN, | 
					
					
						
						| 
							 | 
						                gen_kwargs={"data_dir": data_dir}, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _generate_examples(self, data_dir): | 
					
					
						
						| 
							 | 
						        def color(text, code): | 
					
					
						
						| 
							 | 
						            return f"\033[{code}m{text}\033[0m" | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        try: | 
					
					
						
						| 
							 | 
						            image_files = {} | 
					
					
						
						| 
							 | 
						            for ext in ("*.png", "*.jpg", "*.jpeg"): | 
					
					
						
						| 
							 | 
						                for img_path in Path(data_dir).rglob(ext): | 
					
					
						
						| 
							 | 
						                    relative_path = str(img_path.relative_to(data_dir)) | 
					
					
						
						| 
							 | 
						                    image_files[relative_path] = str(img_path) | 
					
					
						
						| 
							 | 
						            parts = [i.split('/')[0] for i in list(image_files.keys())] | 
					
					
						
						| 
							 | 
						            parts = set(parts) | 
					
					
						
						| 
							 | 
						            if "part_000" not in parts: | 
					
					
						
						| 
							 | 
						               parts= [''] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        except Exception as e: | 
					
					
						
						| 
							 | 
						            print(color(f"Error loading images: {e}", "31"))   | 
					
					
						
						| 
							 | 
						            return | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        csv_files = list(Path(data_dir).rglob("*.csv")) | 
					
					
						
						| 
							 | 
						        csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")] | 
					
					
						
						| 
							 | 
						        if not csv_files: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            pass | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        csv_path = csv_files[0] if csv_files else None | 
					
					
						
						| 
							 | 
						        df = pd.read_csv(csv_path) if csv_path else None | 
					
					
						
						| 
							 | 
						        image_col_exists = True | 
					
					
						
						| 
							 | 
						        if df is not None and "image" not in df.columns: | 
					
					
						
						| 
							 | 
						            image_col_exists = False | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						        images = df["image"].tolist() if image_col_exists and df is not None else [] | 
					
					
						
						| 
							 | 
						        images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        try: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if df is None: | 
					
					
						
						| 
							 | 
						                for i, j in tqdm(image_files.items(), desc="Processing images", unit="image"): | 
					
					
						
						| 
							 | 
						                    yield i, { | 
					
					
						
						| 
							 | 
						                        "image": j, | 
					
					
						
						| 
							 | 
						                        "file_name": i, | 
					
					
						
						| 
							 | 
						                        "metadata": None, | 
					
					
						
						| 
							 | 
						                    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"): | 
					
					
						
						| 
							 | 
						                    fname = row["ID"] | 
					
					
						
						| 
							 | 
						                    raw_record_img_path = images[idx] if images else ""  | 
					
					
						
						| 
							 | 
						                    record_img_name = raw_record_img_path.split('/')[-1] | 
					
					
						
						| 
							 | 
						                    for part in parts: | 
					
					
						
						| 
							 | 
						                        if part == '': | 
					
					
						
						| 
							 | 
						                            record_img_path = record_img_name | 
					
					
						
						| 
							 | 
						                        else: | 
					
					
						
						| 
							 | 
						                            record_img_path = "/".join([part, record_img_name.strip()]) | 
					
					
						
						| 
							 | 
						                            if "Water_flow_scene_render" in data_dir: | 
					
					
						
						| 
							 | 
						                                record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"]) | 
					
					
						
						| 
							 | 
						                        if record_img_path in image_files: | 
					
					
						
						| 
							 | 
						                             | 
					
					
						
						| 
							 | 
						                            yield idx, { | 
					
					
						
						| 
							 | 
						                                "image": image_files[record_img_path], | 
					
					
						
						| 
							 | 
						                                "file_name": fname, | 
					
					
						
						| 
							 | 
						                                "metadata": row.to_json(), | 
					
					
						
						| 
							 | 
						                            } | 
					
					
						
						| 
							 | 
						                            break | 
					
					
						
						| 
							 | 
						                             | 
					
					
						
						| 
							 | 
						                        else: | 
					
					
						
						| 
							 | 
						                            yield idx, { | 
					
					
						
						| 
							 | 
						                                 | 
					
					
						
						| 
							 | 
						                                "file_name": fname, | 
					
					
						
						| 
							 | 
						                                "metadata": row.to_json(), | 
					
					
						
						| 
							 | 
						                            } | 
					
					
						
						| 
							 | 
						                            break | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        except Exception as e: | 
					
					
						
						| 
							 | 
						            print(color(f"Error processing CSV rows: {e}", "31")) | 
					
					
						
						| 
							 | 
						         |