[email protected]
commited on
Commit
·
64b346b
1
Parent(s):
021ac7d
udapte readme
Browse files
README.md
CHANGED
@@ -336,6 +336,48 @@ dataset_info:
|
|
336 |
|
337 |
**Causal3D** is a comprehensive benchmark designed to evaluate models’ abilities to uncover *latent causal relations* from structured and visual data. This dataset integrates **3D-rendered scenes** with **tabular causal annotations**, providing a unified testbed for advancing *causal discovery*, *causal representation learning*, and *causal reasoning* with **vision-language models (VLMs)** and **large language models (LLMs)**.
|
338 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
## 📚 Usage
|
340 |
|
341 |
#### 🔹 Option 1: Load from Hugging Face
|
@@ -365,11 +407,9 @@ croissant_dataset = mlc.Dataset(
|
|
365 |
"https://www.kaggle.com/datasets/dsliu0011/causal3d-image-dataset/croissant/download"
|
366 |
)
|
367 |
|
368 |
-
# List available record sets
|
369 |
record_sets = croissant_dataset.metadata.record_sets
|
370 |
print(record_sets)
|
371 |
|
372 |
-
# Load records from the first record set
|
373 |
df = pd.DataFrame(croissant_dataset.records(record_set=record_sets[0].uuid))
|
374 |
print(df.head())
|
375 |
```
|
@@ -394,48 +434,6 @@ Each sub-dataset (scene) contains:
|
|
394 |
- `images/`: Rendered images under different camera views and backgrounds.
|
395 |
- `tabular.csv`: Instance-level annotations including object attributes in causal graph.
|
396 |
|
397 |
-
|
398 |
-
## 🖼️ Visual Previews
|
399 |
-
|
400 |
-
Below are example images from different Causal3D scenes:
|
401 |
-
|
402 |
-
<table>
|
403 |
-
<tr>
|
404 |
-
<td align="center">
|
405 |
-
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/parabola.png" width="250"/><br/>parabola
|
406 |
-
</td>
|
407 |
-
<td align="center">
|
408 |
-
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/convex.png" width="250"/><br/>convex
|
409 |
-
</td>
|
410 |
-
</tr>
|
411 |
-
<tr>
|
412 |
-
<td align="center">
|
413 |
-
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/magnetic.png" width="200"/><br/>magnetic
|
414 |
-
</td>
|
415 |
-
<td align="center">
|
416 |
-
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/pendulum.png" width="200"/><br/>pendulum
|
417 |
-
</td>
|
418 |
-
<td align="center">
|
419 |
-
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/reflection.png" width="200"/><br/>reflection
|
420 |
-
</td>
|
421 |
-
</tr>
|
422 |
-
<tr>
|
423 |
-
<td align="center">
|
424 |
-
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/seesaw.png" width="200"/><br/>seesaw
|
425 |
-
</td>
|
426 |
-
<td align="center">
|
427 |
-
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/spring.png" width="200"/><br/>spring
|
428 |
-
</td>
|
429 |
-
<td align="center">
|
430 |
-
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/water_flow.png" width="200"/><br/>water_flow
|
431 |
-
</td>
|
432 |
-
</tr>
|
433 |
-
</table>
|
434 |
-
|
435 |
-
<!-- - `causal_graph.json`: Ground-truth causal structure (as adjacency matrix or graph).
|
436 |
-
- `view_info.json`: Camera/viewpoint metadata.
|
437 |
-
- `split.json`: Recommended train/val/test splits for benchmarking. -->
|
438 |
-
|
439 |
---
|
440 |
|
441 |
## 🎯 Evaluation Tasks
|
|
|
336 |
|
337 |
**Causal3D** is a comprehensive benchmark designed to evaluate models’ abilities to uncover *latent causal relations* from structured and visual data. This dataset integrates **3D-rendered scenes** with **tabular causal annotations**, providing a unified testbed for advancing *causal discovery*, *causal representation learning*, and *causal reasoning* with **vision-language models (VLMs)** and **large language models (LLMs)**.
|
338 |
|
339 |
+
## 🖼️ Visual Previews
|
340 |
+
|
341 |
+
Below are example images from different Causal3D scenes:
|
342 |
+
|
343 |
+
<table>
|
344 |
+
<tr>
|
345 |
+
<td align="center">
|
346 |
+
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/parabola.png" width="250"/><br/>parabola
|
347 |
+
</td>
|
348 |
+
<td align="center">
|
349 |
+
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/convex.png" width="250"/><br/>convex
|
350 |
+
</td>
|
351 |
+
</tr>
|
352 |
+
<tr>
|
353 |
+
<td align="center">
|
354 |
+
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/magnetic.png" width="200"/><br/>magnetic
|
355 |
+
</td>
|
356 |
+
<td align="center">
|
357 |
+
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/pendulum.png" width="200"/><br/>pendulum
|
358 |
+
</td>
|
359 |
+
<td align="center">
|
360 |
+
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/reflection.png" width="200"/><br/>reflection
|
361 |
+
</td>
|
362 |
+
</tr>
|
363 |
+
<tr>
|
364 |
+
<td align="center">
|
365 |
+
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/seesaw.png" width="200"/><br/>seesaw
|
366 |
+
</td>
|
367 |
+
<td align="center">
|
368 |
+
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/spring.png" width="200"/><br/>spring
|
369 |
+
</td>
|
370 |
+
<td align="center">
|
371 |
+
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/water_flow.png" width="200"/><br/>water_flow
|
372 |
+
</td>
|
373 |
+
</tr>
|
374 |
+
</table>
|
375 |
+
|
376 |
+
<!-- - `causal_graph.json`: Ground-truth causal structure (as adjacency matrix or graph).
|
377 |
+
- `view_info.json`: Camera/viewpoint metadata.
|
378 |
+
- `split.json`: Recommended train/val/test splits for benchmarking. -->
|
379 |
+
|
380 |
+
|
381 |
## 📚 Usage
|
382 |
|
383 |
#### 🔹 Option 1: Load from Hugging Face
|
|
|
407 |
"https://www.kaggle.com/datasets/dsliu0011/causal3d-image-dataset/croissant/download"
|
408 |
)
|
409 |
|
|
|
410 |
record_sets = croissant_dataset.metadata.record_sets
|
411 |
print(record_sets)
|
412 |
|
|
|
413 |
df = pd.DataFrame(croissant_dataset.records(record_set=record_sets[0].uuid))
|
414 |
print(df.head())
|
415 |
```
|
|
|
434 |
- `images/`: Rendered images under different camera views and backgrounds.
|
435 |
- `tabular.csv`: Instance-level annotations including object attributes in causal graph.
|
436 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
---
|
438 |
|
439 |
## 🎯 Evaluation Tasks
|