LLDDSS commited on
Commit
6db6410
·
verified ·
1 Parent(s): bfa99a6

Delete loading script auxiliary file

Browse files
Files changed (1) hide show
  1. dataset.py +0 -175
dataset.py DELETED
@@ -1,175 +0,0 @@
1
- import os
2
- import glob
3
- from pathlib import Path
4
- from typing import List
5
- import pandas as pd
6
- import numpy as np
7
- from tqdm import tqdm
8
- import datasets
9
-
10
- print("✅ Custom Causal3D loaded - outside code")
11
- _CITATION = """\
12
- @article{liu2025causal3d,
13
- title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},
14
- author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},
15
- journal={arXiv preprint arXiv:2503.04852},
16
- year={2025}
17
- }
18
- """
19
-
20
- _DESCRIPTION = """\
21
- Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes.
22
- It includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.
23
- """
24
-
25
- _HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D"
26
- _LICENSE = "CC-BY-4.0"
27
-
28
- class Causal3D(datasets.GeneratorBasedBuilder):
29
- DEFAULT_CONFIG_NAME = "real_scenes_Real_magnet_v3"
30
- BUILDER_CONFIGS = [
31
- # hypothetical_scenes
32
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_linear",
33
- version=datasets.Version("1.0.0"),
34
- description="Hypothetic_v2_linear scene"),
35
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_nonlinear scene"),
36
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v3_fully_connected_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v3_fully_connected_linear scene"),
37
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_full_connected scene"),
38
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_v scene"),
39
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_nonlinear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_nonlinear_v scene"),
40
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear scene"),
41
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear_full_connected scene"),
42
- datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_linear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_linear_128P scene"),
43
- datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_nonlinear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_nonlinear_128P scene"),
44
- datasets.BuilderConfig(name="hypothetical_scenes_rendered_h5_nonlinear", version=datasets.Version("1.0.0"), description="rendered_h5_nonlinear scene"),
45
-
46
- # real_scenes
47
- datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
48
- datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
49
- datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
50
- datasets.BuilderConfig(name="real_scenes_Real_parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
51
- datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
52
- datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
53
- datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
54
- datasets.BuilderConfig(name="real_scenes_real_pendulum", version=datasets.Version("1.0.0"), description="real_pendulum scene"),
55
- datasets.BuilderConfig(name="real_scenes_rendered_magnetic_128", version=datasets.Version("1.0.0"), description="rendered_magnetic_128 scene"),
56
- datasets.BuilderConfig(name="real_scenes_rendered_reflection_128P", version=datasets.Version("1.0.0"), description="rendered_reflection_128P scene"),
57
- datasets.BuilderConfig(name="real_scenes_seesaw_scene_128P", version=datasets.Version("1.0.0"), description="seesaw_scene_128P scene"),
58
- datasets.BuilderConfig(name="real_scenes_spring_scene_128P", version=datasets.Version("1.0.0"), description="spring_scene_128P scene"),
59
- ]
60
-
61
- def _info(self):
62
- print(">>> Loaded config:", self.config.name) # 🟡 加这个调试输出
63
- return datasets.DatasetInfo(
64
- description=_DESCRIPTION,
65
- features=datasets.Features({
66
- "image": datasets.Image(),
67
- "file_name": datasets.Value("string"),
68
- "metadata": datasets.Value("string"), # optionally replace with structured fields
69
- }),
70
- homepage=_HOMEPAGE,
71
- license=_LICENSE,
72
- citation=_CITATION,
73
- )
74
-
75
- def _split_generators(self, dl_manager):
76
- parts = self.config.name.split("_", 2)
77
- category = parts[0] + "_" + parts[1] # real_scenes or hypothetical_scenes
78
-
79
- if category not in ["real_scenes", "hypothetical_scenes"]:
80
- raise ValueError(f"Invalid category '{category}'. Must be one of ['real_scenes', 'hypothetical_scenes']")
81
-
82
- scene = parts[2]
83
- data_dir = os.path.join(category, scene)
84
-
85
- return [
86
- datasets.SplitGenerator(
87
- name=datasets.Split.TRAIN,
88
- gen_kwargs={"data_dir": data_dir},
89
- )
90
- ]
91
-
92
- def _generate_examples(self, data_dir):
93
- # Find the .csv file
94
- csv_files = list(Path(data_dir).rglob("*.csv"))
95
- csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
96
- if not csv_files:
97
- print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
98
- return # ✅ 跳过该 config,不报错
99
- csv_path = csv_files[0]
100
- df = pd.read_csv(csv_path)
101
- if "image" not in df.columns:
102
- print(f"\033[31m[SKIP] 'image' column not found in {csv_path}, skipping this config.\033[0m")
103
- return
104
-
105
- # sub_folders = [os.path.join(data_dir, i) for i in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, i))]
106
-
107
- def color(text, code):
108
- return f"\033[{code}m{text}\033[0m"
109
- # print()
110
- # print(color(f"data_dir: {data_dir}", "36")) # Cyan
111
- # print(color(f"csv_path: {csv_path}", "33")) # Yellow
112
- # print(color(f"csv_path.name: {csv_path.name}", "35")) # Magenta
113
- # print(color(f"CSV columns: {list(df.columns)}", "32")) # Green
114
-
115
- images = df["image"].tolist()
116
- # images only contain image names
117
-
118
- images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
119
-
120
-
121
- # Load image paths
122
- try:
123
- image_files = {}
124
- for ext in ("*.png", "*.jpg", "*.jpeg"):
125
- for img_path in Path(data_dir).rglob(ext):
126
- relative_path = str(img_path.relative_to(data_dir))
127
- image_files[relative_path] = str(img_path)
128
- parts = [i.split('/')[0] for i in list(image_files.keys())]
129
- parts = set(parts)
130
- if "part_000" not in parts:
131
- parts= ['']
132
-
133
-
134
- except Exception as e:
135
- print(color(f"Error loading images: {e}", "31")) # Red
136
- return
137
- try:
138
- # Match CSV rows with image paths
139
- for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
140
- fname = row["ID"]
141
- raw_record_img_path = row["image"]
142
- record_img_name = raw_record_img_path.split('/')[-1]
143
- for part in parts:
144
- if part == '':
145
- record_img_path = record_img_name
146
- else:
147
- record_img_path = "/".join([part, record_img_name.strip()])
148
- if "Water_flow_scene_render" in data_dir:
149
- record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
150
-
151
- # print(f"raw_record_img_path: {raw_record_img_path}")
152
- # print(f"record_img_name: {record_img_name}")
153
- # print("part: ", part)
154
- # print(f"part: {part}, record_img_name: {record_img_name}, record_img_path: {record_img_path}")
155
- # print(f"record_img_path in image_files: {record_img_path in image_files}")
156
- # print(image_files.keys())
157
- # print(f"part: {part}, record_img_name: {record_img_name}, record_img_path: {record_img_path}, "
158
- # f"record_image_path in image_files: {record_img_path in image_files}, image_files,key[0]: {list(image_files.keys())[0]}")
159
- # print(image_files)
160
- # exit(0)
161
- if record_img_path in image_files:
162
- # print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
163
- yield idx, {
164
- "image": image_files[record_img_path],
165
- "file_name": fname,
166
- "metadata": row.to_json(),
167
- }
168
- break
169
-
170
-
171
- except Exception as e:
172
- print(color(f"Error processing CSV rows: {e}", "31"))
173
-
174
-
175
-