DsL commited on
Commit
6fbcc0a
·
1 Parent(s): 85274fb
Files changed (2) hide show
  1. Causal3D_.py +165 -0
  2. __init__.py +1 -0
Causal3D_.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import pandas as pd
3
+ import os
4
+ from pathlib import Path
5
+ from tqdm import tqdm
6
+
7
+ print("✅ Custom Causal3D loaded: outside Causal3D.py")
8
+ _CITATION = """\
9
+ @article{liu2025causal3d,
10
+ title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},
11
+ author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},
12
+ journal={arXiv preprint arXiv:2503.04852},
13
+ year={2025}
14
+ }
15
+ """
16
+
17
+ _DESCRIPTION = """\
18
+ Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes.
19
+ It includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.
20
+ """
21
+
22
+ _HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D"
23
+ _LICENSE = "CC-BY-4.0"
24
+
25
+ class Causal3D(datasets.GeneratorBasedBuilder):
26
+ DEFAULT_CONFIG_NAME = "real_scenes_Water_flow_scene_render"
27
+ BUILDER_CONFIGS = [
28
+ # hypothetical_scenes
29
+ datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_linear scene"),
30
+ datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_nonlinear scene"),
31
+ datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v3_fully_connected_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v3_fully_connected_linear scene"),
32
+ datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_full_connected scene"),
33
+ datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_v scene"),
34
+ datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_nonlinear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_nonlinear_v scene"),
35
+ datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear scene"),
36
+ datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear_full_connected scene"),
37
+ datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_linear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_linear_128P scene"),
38
+ datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_nonlinear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_nonlinear_128P scene"),
39
+ datasets.BuilderConfig(name="hypothetical_scenes_rendered_h5_nonlinear", version=datasets.Version("1.0.0"), description="rendered_h5_nonlinear scene"),
40
+
41
+ # real_scenes
42
+ datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
43
+ datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
44
+ datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
45
+ # datasets.BuilderConfig(name="real_scenes_Real_Parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
46
+ datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
47
+ datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
48
+ datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
49
+ datasets.BuilderConfig(name="real_scenes_real_pendulum", version=datasets.Version("1.0.0"), description="real_pendulum scene"),
50
+ datasets.BuilderConfig(name="real_scenes_rendered_magnetic_128", version=datasets.Version("1.0.0"), description="rendered_magnetic_128 scene"),
51
+ datasets.BuilderConfig(name="real_scenes_rendered_reflection_128P", version=datasets.Version("1.0.0"), description="rendered_reflection_128P scene"),
52
+ datasets.BuilderConfig(name="real_scenes_seesaw_scene_128P", version=datasets.Version("1.0.0"), description="seesaw_scene_128P scene"),
53
+ datasets.BuilderConfig(name="real_scenes_spring_scene_128P", version=datasets.Version("1.0.0"), description="spring_scene_128P scene"),
54
+ ]
55
+
56
+ def _info(self):
57
+ return datasets.DatasetInfo(
58
+ description=_DESCRIPTION,
59
+ features=datasets.Features({
60
+ "image": datasets.Image(),
61
+ "file_name": datasets.Value("string"),
62
+ "metadata": datasets.Value("string"), # optionally replace with structured fields
63
+ }),
64
+ homepage=_HOMEPAGE,
65
+ license=_LICENSE,
66
+ citation=_CITATION,
67
+ )
68
+
69
+ def _split_generators(self, dl_manager):
70
+ parts = self.config.name.split("_", 2)
71
+ category = parts[0] + "_" + parts[1] # real_scenes or hypothetical_scenes
72
+
73
+ if category not in ["real_scenes", "hypothetical_scenes"]:
74
+ raise ValueError(f"Invalid category '{category}'. Must be one of ['real_scenes', 'hypothetical_scenes']")
75
+
76
+ scene = parts[2]
77
+ data_dir = os.path.join(category, scene)
78
+
79
+ return [
80
+ datasets.SplitGenerator(
81
+ name=datasets.Split.TRAIN,
82
+ gen_kwargs={"data_dir": data_dir},
83
+ )
84
+ ]
85
+
86
+ def _generate_examples(self, data_dir):
87
+ def color(text, code):
88
+ return f"\033[{code}m{text}\033[0m"
89
+
90
+ # Load image paths
91
+ try:
92
+ image_files = {}
93
+ for ext in ("*.png", "*.jpg", "*.jpeg"):
94
+ for img_path in Path(data_dir).rglob(ext):
95
+ relative_path = str(img_path.relative_to(data_dir))
96
+ image_files[relative_path] = str(img_path)
97
+ parts = [i.split('/')[0] for i in list(image_files.keys())]
98
+ parts = set(parts)
99
+ if "part_000" not in parts:
100
+ parts= ['']
101
+
102
+
103
+ except Exception as e:
104
+ print(color(f"Error loading images: {e}", "31")) # Red
105
+ return
106
+
107
+ # Find the .csv file
108
+ csv_files = list(Path(data_dir).rglob("*.csv"))
109
+ csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
110
+ if not csv_files:
111
+ # print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
112
+ pass
113
+ # print(f"\033[33m[INFO] Found CSV: {csv_files}\033[0m")
114
+ csv_path = csv_files[0] if csv_files else None
115
+ df = pd.read_csv(csv_path) if csv_path else None
116
+ image_col_exists = True
117
+ if df is not None and "image" not in df.columns:
118
+ image_col_exists = False
119
+
120
+ images = df["image"].tolist() if image_col_exists and df is not None else []
121
+ images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
122
+
123
+ try:
124
+ # Match CSV rows with image paths
125
+ if df is None:
126
+ for i, j in tqdm(image_files.items(), desc="Processing images", unit="image"):
127
+ yield i, {
128
+ "image": j,
129
+ "file_name": i,
130
+ "metadata": None,
131
+ }
132
+
133
+ else:
134
+ for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
135
+ fname = row["ID"]
136
+ raw_record_img_path = images[idx] if images else "" #row["image"]
137
+ record_img_name = raw_record_img_path.split('/')[-1]
138
+ for part in parts:
139
+ if part == '':
140
+ record_img_path = record_img_name
141
+ else:
142
+ record_img_path = "/".join([part, record_img_name.strip()])
143
+ if "Water_flow_scene_render" in data_dir:
144
+ record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
145
+ if record_img_path in image_files:
146
+ # print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
147
+ yield idx, {
148
+ "image": image_files[record_img_path],
149
+ "file_name": fname,
150
+ "metadata": row.to_json(),
151
+ }
152
+ break
153
+
154
+ else:
155
+ yield idx, {
156
+ # "image": "",
157
+ "file_name": fname,
158
+ "metadata": row.to_json(),
159
+ }
160
+ break
161
+
162
+
163
+ except Exception as e:
164
+ print(color(f"Error processing CSV rows: {e}", "31"))
165
+
__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .Causal3D_ import Causal3D