Delete loading script
Browse files- Causal3D.py +0 -165
Causal3D.py
DELETED
@@ -1,165 +0,0 @@
|
|
1 |
-
import datasets
|
2 |
-
import pandas as pd
|
3 |
-
import os
|
4 |
-
from pathlib import Path
|
5 |
-
from tqdm import tqdm
|
6 |
-
|
7 |
-
print("✅ Custom Causal3D loaded: outside Causal3D.py")
|
8 |
-
_CITATION = """\
|
9 |
-
@article{liu2025causal3d,
|
10 |
-
title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},
|
11 |
-
author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},
|
12 |
-
journal={arXiv preprint arXiv:2503.04852},
|
13 |
-
year={2025}
|
14 |
-
}
|
15 |
-
"""
|
16 |
-
|
17 |
-
_DESCRIPTION = """\
|
18 |
-
Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes.
|
19 |
-
It includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.
|
20 |
-
"""
|
21 |
-
|
22 |
-
_HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D"
|
23 |
-
_LICENSE = "CC-BY-4.0"
|
24 |
-
|
25 |
-
class Causal3D(datasets.GeneratorBasedBuilder):
|
26 |
-
DEFAULT_CONFIG_NAME = "real_scenes_Water_flow_scene_render"
|
27 |
-
BUILDER_CONFIGS = [
|
28 |
-
# hypothetical_scenes
|
29 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_linear scene"),
|
30 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_nonlinear scene"),
|
31 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v3_fully_connected_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v3_fully_connected_linear scene"),
|
32 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_full_connected scene"),
|
33 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_v scene"),
|
34 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_nonlinear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_nonlinear_v scene"),
|
35 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear scene"),
|
36 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear_full_connected scene"),
|
37 |
-
datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_linear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_linear_128P scene"),
|
38 |
-
datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_nonlinear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_nonlinear_128P scene"),
|
39 |
-
datasets.BuilderConfig(name="hypothetical_scenes_rendered_h5_nonlinear", version=datasets.Version("1.0.0"), description="rendered_h5_nonlinear scene"),
|
40 |
-
|
41 |
-
# real_scenes
|
42 |
-
datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
|
43 |
-
datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
|
44 |
-
datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
|
45 |
-
# datasets.BuilderConfig(name="real_scenes_Real_Parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
|
46 |
-
datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
|
47 |
-
datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
|
48 |
-
datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
|
49 |
-
datasets.BuilderConfig(name="real_scenes_real_pendulum", version=datasets.Version("1.0.0"), description="real_pendulum scene"),
|
50 |
-
datasets.BuilderConfig(name="real_scenes_rendered_magnetic_128", version=datasets.Version("1.0.0"), description="rendered_magnetic_128 scene"),
|
51 |
-
datasets.BuilderConfig(name="real_scenes_rendered_reflection_128P", version=datasets.Version("1.0.0"), description="rendered_reflection_128P scene"),
|
52 |
-
datasets.BuilderConfig(name="real_scenes_seesaw_scene_128P", version=datasets.Version("1.0.0"), description="seesaw_scene_128P scene"),
|
53 |
-
datasets.BuilderConfig(name="real_scenes_spring_scene_128P", version=datasets.Version("1.0.0"), description="spring_scene_128P scene"),
|
54 |
-
]
|
55 |
-
|
56 |
-
def _info(self):
|
57 |
-
return datasets.DatasetInfo(
|
58 |
-
description=_DESCRIPTION,
|
59 |
-
features=datasets.Features({
|
60 |
-
"image": datasets.Image(),
|
61 |
-
"file_name": datasets.Value("string"),
|
62 |
-
"metadata": datasets.Value("string"), # optionally replace with structured fields
|
63 |
-
}),
|
64 |
-
homepage=_HOMEPAGE,
|
65 |
-
license=_LICENSE,
|
66 |
-
citation=_CITATION,
|
67 |
-
)
|
68 |
-
|
69 |
-
def _split_generators(self, dl_manager):
|
70 |
-
parts = self.config.name.split("_", 2)
|
71 |
-
category = parts[0] + "_" + parts[1] # real_scenes or hypothetical_scenes
|
72 |
-
|
73 |
-
if category not in ["real_scenes", "hypothetical_scenes"]:
|
74 |
-
raise ValueError(f"Invalid category '{category}'. Must be one of ['real_scenes', 'hypothetical_scenes']")
|
75 |
-
|
76 |
-
scene = parts[2]
|
77 |
-
data_dir = os.path.join(category, scene)
|
78 |
-
|
79 |
-
return [
|
80 |
-
datasets.SplitGenerator(
|
81 |
-
name=datasets.Split.TRAIN,
|
82 |
-
gen_kwargs={"data_dir": data_dir},
|
83 |
-
)
|
84 |
-
]
|
85 |
-
|
86 |
-
def _generate_examples(self, data_dir):
|
87 |
-
def color(text, code):
|
88 |
-
return f"\033[{code}m{text}\033[0m"
|
89 |
-
|
90 |
-
# Load image paths
|
91 |
-
try:
|
92 |
-
image_files = {}
|
93 |
-
for ext in ("*.png", "*.jpg", "*.jpeg"):
|
94 |
-
for img_path in Path(data_dir).rglob(ext):
|
95 |
-
relative_path = str(img_path.relative_to(data_dir))
|
96 |
-
image_files[relative_path] = str(img_path)
|
97 |
-
parts = [i.split('/')[0] for i in list(image_files.keys())]
|
98 |
-
parts = set(parts)
|
99 |
-
if "part_000" not in parts:
|
100 |
-
parts= ['']
|
101 |
-
|
102 |
-
|
103 |
-
except Exception as e:
|
104 |
-
print(color(f"Error loading images: {e}", "31")) # Red
|
105 |
-
return
|
106 |
-
|
107 |
-
# Find the .csv file
|
108 |
-
csv_files = list(Path(data_dir).rglob("*.csv"))
|
109 |
-
csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
|
110 |
-
if not csv_files:
|
111 |
-
# print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
|
112 |
-
pass
|
113 |
-
# print(f"\033[33m[INFO] Found CSV: {csv_files}\033[0m")
|
114 |
-
csv_path = csv_files[0] if csv_files else None
|
115 |
-
df = pd.read_csv(csv_path) if csv_path else None
|
116 |
-
image_col_exists = True
|
117 |
-
if df is not None and "image" not in df.columns:
|
118 |
-
image_col_exists = False
|
119 |
-
|
120 |
-
images = df["image"].tolist() if image_col_exists and df is not None else []
|
121 |
-
images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
|
122 |
-
|
123 |
-
try:
|
124 |
-
# Match CSV rows with image paths
|
125 |
-
if df is None:
|
126 |
-
for i, j in tqdm(image_files.items(), desc="Processing images", unit="image"):
|
127 |
-
yield i, {
|
128 |
-
"image": j,
|
129 |
-
"file_name": i,
|
130 |
-
"metadata": None,
|
131 |
-
}
|
132 |
-
|
133 |
-
else:
|
134 |
-
for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
|
135 |
-
fname = row["ID"]
|
136 |
-
raw_record_img_path = images[idx] if images else "" #row["image"]
|
137 |
-
record_img_name = raw_record_img_path.split('/')[-1]
|
138 |
-
for part in parts:
|
139 |
-
if part == '':
|
140 |
-
record_img_path = record_img_name
|
141 |
-
else:
|
142 |
-
record_img_path = "/".join([part, record_img_name.strip()])
|
143 |
-
if "Water_flow_scene_render" in data_dir:
|
144 |
-
record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
|
145 |
-
if record_img_path in image_files:
|
146 |
-
# print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
|
147 |
-
yield idx, {
|
148 |
-
"image": image_files[record_img_path],
|
149 |
-
"file_name": fname,
|
150 |
-
"metadata": row.to_json(),
|
151 |
-
}
|
152 |
-
break
|
153 |
-
|
154 |
-
else:
|
155 |
-
yield idx, {
|
156 |
-
# "image": "",
|
157 |
-
"file_name": fname,
|
158 |
-
"metadata": row.to_json(),
|
159 |
-
}
|
160 |
-
break
|
161 |
-
|
162 |
-
|
163 |
-
except Exception as e:
|
164 |
-
print(color(f"Error processing CSV rows: {e}", "31"))
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|