DsL commited on
Commit
c356bec
·
1 Parent(s): c781e59

update dataloader

Browse files
Files changed (2) hide show
  1. Causal3D.py +55 -60
  2. README.md +323 -0
Causal3D.py CHANGED
@@ -23,9 +23,6 @@ _HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D"
23
  _LICENSE = "CC-BY-4.0"
24
 
25
  class Causal3D(datasets.GeneratorBasedBuilder):
26
- # def __init__(self):
27
- # super().__init__()
28
- # print("Causal3D dataset builder initialized.")
29
  DEFAULT_CONFIG_NAME = "real_scenes_Real_magnet_v3"
30
  BUILDER_CONFIGS = [
31
  # hypothetical_scenes
@@ -45,7 +42,7 @@ class Causal3D(datasets.GeneratorBasedBuilder):
45
  datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
46
  datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
47
  datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
48
- datasets.BuilderConfig(name="real_scenes_Real_parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
49
  datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
50
  datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
51
  datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
@@ -87,34 +84,9 @@ class Causal3D(datasets.GeneratorBasedBuilder):
87
  ]
88
 
89
  def _generate_examples(self, data_dir):
90
- # Find the .csv file
91
- csv_files = list(Path(data_dir).rglob("*.csv"))
92
- csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
93
- if not csv_files:
94
- print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
95
- return # ✅ 跳过该 config,不报错
96
- csv_path = csv_files[0]
97
- df = pd.read_csv(csv_path)
98
- if "image" not in df.columns:
99
- print(f"\033[31m[SKIP] 'image' column not found in {csv_path}, skipping this config.\033[0m")
100
- return
101
-
102
- # sub_folders = [os.path.join(data_dir, i) for i in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, i))]
103
-
104
  def color(text, code):
105
  return f"\033[{code}m{text}\033[0m"
106
- # print()
107
- # print(color(f"data_dir: {data_dir}", "36")) # Cyan
108
- # print(color(f"csv_path: {csv_path}", "33")) # Yellow
109
- # print(color(f"csv_path.name: {csv_path.name}", "35")) # Magenta
110
- # print(color(f"CSV columns: {list(df.columns)}", "32")) # Green
111
-
112
- images = df["image"].tolist()
113
- # images only contain image names
114
-
115
- images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
116
-
117
-
118
  # Load image paths
119
  try:
120
  image_files = {}
@@ -131,38 +103,61 @@ class Causal3D(datasets.GeneratorBasedBuilder):
131
  except Exception as e:
132
  print(color(f"Error loading images: {e}", "31")) # Red
133
  return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  try:
135
  # Match CSV rows with image paths
136
- for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
137
- fname = row["ID"]
138
- raw_record_img_path = row["image"]
139
- record_img_name = raw_record_img_path.split('/')[-1]
140
- for part in parts:
141
- if part == '':
142
- record_img_path = record_img_name
143
- else:
144
- record_img_path = "/".join([part, record_img_name.strip()])
145
- if "Water_flow_scene_render" in data_dir:
146
- record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
147
-
148
- # print(f"raw_record_img_path: {raw_record_img_path}")
149
- # print(f"record_img_name: {record_img_name}")
150
- # print("part: ", part)
151
- # print(f"part: {part}, record_img_name: {record_img_name}, record_img_path: {record_img_path}")
152
- # print(f"record_img_path in image_files: {record_img_path in image_files}")
153
- # print(image_files.keys())
154
- # print(f"part: {part}, record_img_name: {record_img_name}, record_img_path: {record_img_path}, "
155
- # f"record_image_path in image_files: {record_img_path in image_files}, image_files,key[0]: {list(image_files.keys())[0]}")
156
- # print(image_files)
157
- # exit(0)
158
- if record_img_path in image_files:
159
- # print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
160
- yield idx, {
161
- "image": image_files[record_img_path],
162
- "file_name": fname,
163
- "metadata": row.to_json(),
164
- }
165
- break
 
 
 
 
 
 
166
 
167
 
168
  except Exception as e:
 
23
  _LICENSE = "CC-BY-4.0"
24
 
25
  class Causal3D(datasets.GeneratorBasedBuilder):
 
 
 
26
  DEFAULT_CONFIG_NAME = "real_scenes_Real_magnet_v3"
27
  BUILDER_CONFIGS = [
28
  # hypothetical_scenes
 
42
  datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
43
  datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
44
  datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
45
+ # datasets.BuilderConfig(name="real_scenes_Real_Parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
46
  datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
47
  datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
48
  datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
 
84
  ]
85
 
86
  def _generate_examples(self, data_dir):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  def color(text, code):
88
  return f"\033[{code}m{text}\033[0m"
89
+
 
 
 
 
 
 
 
 
 
 
 
90
  # Load image paths
91
  try:
92
  image_files = {}
 
103
  except Exception as e:
104
  print(color(f"Error loading images: {e}", "31")) # Red
105
  return
106
+
107
+ # Find the .csv file
108
+ csv_files = list(Path(data_dir).rglob("*.csv"))
109
+ csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
110
+ if not csv_files:
111
+ # print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
112
+ pass
113
+ # print(f"\033[33m[INFO] Found CSV: {csv_files}\033[0m")
114
+ csv_path = csv_files[0] if csv_files else None
115
+ df = pd.read_csv(csv_path) if csv_path else None
116
+ image_col_exists = True
117
+ if df is not None and "image" not in df.columns:
118
+ image_col_exists = False
119
+
120
+ images = df["image"].tolist() if image_col_exists and df is not None else []
121
+ images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
122
+
123
  try:
124
  # Match CSV rows with image paths
125
+ if df is None:
126
+ for i, j in tqdm(image_files.items(), desc="Processing images", unit="image"):
127
+ yield i, {
128
+ "image": j,
129
+ "file_name": i,
130
+ "metadata": None,
131
+ }
132
+
133
+ else:
134
+ for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
135
+ fname = row["ID"]
136
+ raw_record_img_path = images[idx] if images else "" #row["image"]
137
+ record_img_name = raw_record_img_path.split('/')[-1]
138
+ for part in parts:
139
+ if part == '':
140
+ record_img_path = record_img_name
141
+ else:
142
+ record_img_path = "/".join([part, record_img_name.strip()])
143
+ if "Water_flow_scene_render" in data_dir:
144
+ record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
145
+ if record_img_path in image_files:
146
+ # print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
147
+ yield idx, {
148
+ "image": image_files[record_img_path],
149
+ "file_name": fname,
150
+ "metadata": row.to_json(),
151
+ }
152
+ break
153
+
154
+ else:
155
+ yield idx, {
156
+ # "image": "",
157
+ "file_name": fname,
158
+ "metadata": row.to_json(),
159
+ }
160
+ break
161
 
162
 
163
  except Exception as e:
README.md CHANGED
@@ -8,6 +8,329 @@ pretty_name: Causal3D
8
  tags:
9
  - Causality
10
  - Computer_Vision
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
  # 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
13
 
 
8
  tags:
9
  - Causality
10
  - Computer_Vision
11
+ dataset_info:
12
+ - config_name: hypothetical_scenes_Hypothetic_v2_linear
13
+ features:
14
+ - name: image
15
+ dtype: image
16
+ - name: file_name
17
+ dtype: string
18
+ - name: metadata
19
+ dtype: string
20
+ splits:
21
+ - name: train
22
+ num_bytes: 2197142
23
+ num_examples: 14368
24
+ download_size: 0
25
+ dataset_size: 2197142
26
+ - config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
27
+ features:
28
+ - name: image
29
+ dtype: image
30
+ - name: file_name
31
+ dtype: string
32
+ - name: metadata
33
+ dtype: string
34
+ splits:
35
+ - name: train
36
+ num_bytes: 1809956
37
+ num_examples: 10000
38
+ download_size: 0
39
+ dataset_size: 1809956
40
+ - config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
41
+ features:
42
+ - name: image
43
+ dtype: image
44
+ - name: file_name
45
+ dtype: string
46
+ - name: metadata
47
+ dtype: string
48
+ splits:
49
+ - name: train
50
+ num_bytes: 1397093
51
+ num_examples: 10000
52
+ download_size: 0
53
+ dataset_size: 1397093
54
+ - config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
55
+ features:
56
+ - name: image
57
+ dtype: image
58
+ - name: file_name
59
+ dtype: string
60
+ - name: metadata
61
+ dtype: string
62
+ splits:
63
+ - name: train
64
+ num_bytes: 1699598
65
+ num_examples: 10050
66
+ download_size: 0
67
+ dataset_size: 1699598
68
+ - config_name: hypothetical_scenes_Hypothetic_v4_linear_v
69
+ features:
70
+ - name: image
71
+ dtype: image
72
+ - name: file_name
73
+ dtype: string
74
+ - name: metadata
75
+ dtype: string
76
+ splits:
77
+ - name: train
78
+ num_bytes: 2053379
79
+ num_examples: 10000
80
+ download_size: 0
81
+ dataset_size: 2053379
82
+ - config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
83
+ features:
84
+ - name: image
85
+ dtype: image
86
+ - name: file_name
87
+ dtype: string
88
+ - name: metadata
89
+ dtype: string
90
+ splits:
91
+ - name: train
92
+ num_bytes: 2828217
93
+ num_examples: 10000
94
+ download_size: 0
95
+ dataset_size: 2828217
96
+ - config_name: hypothetical_scenes_Hypothetic_v5_linear
97
+ features:
98
+ - name: image
99
+ dtype: image
100
+ - name: file_name
101
+ dtype: string
102
+ - name: metadata
103
+ dtype: string
104
+ splits:
105
+ - name: train
106
+ num_bytes: 1956461
107
+ num_examples: 10000
108
+ download_size: 0
109
+ dataset_size: 1956461
110
+ - config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
111
+ features:
112
+ - name: image
113
+ dtype: image
114
+ - name: file_name
115
+ dtype: string
116
+ - name: metadata
117
+ dtype: string
118
+ splits:
119
+ - name: train
120
+ num_bytes: 1955921
121
+ num_examples: 10000
122
+ download_size: 0
123
+ dataset_size: 1955921
124
+ - config_name: hypothetical_scenes_rendered_h3_linear_128P
125
+ features:
126
+ - name: image
127
+ dtype: image
128
+ - name: file_name
129
+ dtype: string
130
+ - name: metadata
131
+ dtype: string
132
+ splits:
133
+ - name: train
134
+ num_bytes: 5425498
135
+ num_examples: 15000
136
+ download_size: 0
137
+ dataset_size: 5425498
138
+ - config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
139
+ features:
140
+ - name: image
141
+ dtype: image
142
+ - name: file_name
143
+ dtype: string
144
+ - name: metadata
145
+ dtype: string
146
+ splits:
147
+ - name: train
148
+ num_bytes: 3852500
149
+ num_examples: 10223
150
+ download_size: 0
151
+ dataset_size: 3852500
152
+ - config_name: hypothetical_scenes_rendered_h5_nonlinear
153
+ features:
154
+ - name: image
155
+ dtype: image
156
+ - name: file_name
157
+ dtype: string
158
+ - name: metadata
159
+ dtype: string
160
+ splits:
161
+ - name: train
162
+ num_bytes: 5459126
163
+ num_examples: 10360
164
+ download_size: 0
165
+ dataset_size: 5459126
166
+ - config_name: real_scenes_Real_Parabola
167
+ features:
168
+ - name: image
169
+ dtype: image
170
+ - name: file_name
171
+ dtype: string
172
+ - name: metadata
173
+ dtype: string
174
+ splits:
175
+ - name: train
176
+ num_bytes: 1323548
177
+ num_examples: 10000
178
+ download_size: 0
179
+ dataset_size: 1323548
180
+ - config_name: real_scenes_Real_magnet_v3
181
+ features:
182
+ - name: image
183
+ dtype: image
184
+ - name: file_name
185
+ dtype: string
186
+ - name: metadata
187
+ dtype: string
188
+ splits:
189
+ - name: train
190
+ num_bytes: 28397
191
+ num_examples: 481
192
+ download_size: 0
193
+ dataset_size: 28397
194
+ - config_name: real_scenes_Real_magnet_v3_5
195
+ features:
196
+ - name: image
197
+ dtype: image
198
+ - name: file_name
199
+ dtype: string
200
+ - name: metadata
201
+ dtype: string
202
+ splits:
203
+ - name: train
204
+ num_bytes: 93977
205
+ num_examples: 1503
206
+ download_size: 0
207
+ dataset_size: 93977
208
+ - config_name: real_scenes_Real_parabola_multi_view
209
+ features:
210
+ - name: image
211
+ dtype: image
212
+ - name: file_name
213
+ dtype: string
214
+ - name: metadata
215
+ dtype: string
216
+ splits:
217
+ - name: train
218
+ num_bytes: 0
219
+ num_examples: 0
220
+ download_size: 0
221
+ dataset_size: 0
222
+ - config_name: real_scenes_Real_spring_v3_256P
223
+ features:
224
+ - name: image
225
+ dtype: image
226
+ - name: file_name
227
+ dtype: string
228
+ - name: metadata
229
+ dtype: string
230
+ splits:
231
+ - name: train
232
+ num_bytes: 136325
233
+ num_examples: 450
234
+ download_size: 0
235
+ dataset_size: 136325
236
+ - config_name: real_scenes_Water_flow_scene_render
237
+ features:
238
+ - name: image
239
+ dtype: image
240
+ - name: file_name
241
+ dtype: string
242
+ - name: metadata
243
+ dtype: string
244
+ splits:
245
+ - name: train
246
+ num_bytes: 2792618
247
+ num_examples: 10000
248
+ download_size: 0
249
+ dataset_size: 2792618
250
+ - config_name: real_scenes_convex_len_render_images
251
+ features:
252
+ - name: image
253
+ dtype: image
254
+ - name: file_name
255
+ dtype: string
256
+ - name: metadata
257
+ dtype: string
258
+ splits:
259
+ - name: train
260
+ num_bytes: 72448
261
+ num_examples: 1078
262
+ download_size: 0
263
+ dataset_size: 72448
264
+ - config_name: real_scenes_real_pendulum
265
+ features:
266
+ - name: image
267
+ dtype: image
268
+ - name: file_name
269
+ dtype: string
270
+ - name: metadata
271
+ dtype: string
272
+ splits:
273
+ - name: train
274
+ num_bytes: 2925963
275
+ num_examples: 9999
276
+ download_size: 0
277
+ dataset_size: 2925963
278
+ - config_name: real_scenes_rendered_magnetic_128
279
+ features:
280
+ - name: image
281
+ dtype: image
282
+ - name: file_name
283
+ dtype: string
284
+ - name: metadata
285
+ dtype: string
286
+ splits:
287
+ - name: train
288
+ num_bytes: 2324526
289
+ num_examples: 8350
290
+ download_size: 0
291
+ dataset_size: 2324526
292
+ - config_name: real_scenes_rendered_reflection_128P
293
+ features:
294
+ - name: image
295
+ dtype: image
296
+ - name: file_name
297
+ dtype: string
298
+ - name: metadata
299
+ dtype: string
300
+ splits:
301
+ - name: train
302
+ num_bytes: 2765222
303
+ num_examples: 9995
304
+ download_size: 0
305
+ dataset_size: 2765222
306
+ - config_name: real_scenes_seesaw_scene_128P
307
+ features:
308
+ - name: image
309
+ dtype: image
310
+ - name: file_name
311
+ dtype: string
312
+ - name: metadata
313
+ dtype: string
314
+ splits:
315
+ - name: train
316
+ num_bytes: 2275814
317
+ num_examples: 10000
318
+ download_size: 0
319
+ dataset_size: 2275814
320
+ - config_name: real_scenes_spring_scene_128P
321
+ features:
322
+ - name: image
323
+ dtype: image
324
+ - name: file_name
325
+ dtype: string
326
+ - name: metadata
327
+ dtype: string
328
+ splits:
329
+ - name: train
330
+ num_bytes: 2547386
331
+ num_examples: 10000
332
+ download_size: 0
333
+ dataset_size: 2547386
334
  ---
335
  # 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
336