DsL
commited on
Commit
·
c356bec
1
Parent(s):
c781e59
update dataloader
Browse files- Causal3D.py +55 -60
- README.md +323 -0
Causal3D.py
CHANGED
|
@@ -23,9 +23,6 @@ _HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D"
|
|
| 23 |
_LICENSE = "CC-BY-4.0"
|
| 24 |
|
| 25 |
class Causal3D(datasets.GeneratorBasedBuilder):
|
| 26 |
-
# def __init__(self):
|
| 27 |
-
# super().__init__()
|
| 28 |
-
# print("Causal3D dataset builder initialized.")
|
| 29 |
DEFAULT_CONFIG_NAME = "real_scenes_Real_magnet_v3"
|
| 30 |
BUILDER_CONFIGS = [
|
| 31 |
# hypothetical_scenes
|
|
@@ -45,7 +42,7 @@ class Causal3D(datasets.GeneratorBasedBuilder):
|
|
| 45 |
datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
|
| 46 |
datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
|
| 47 |
datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
|
| 48 |
-
datasets.BuilderConfig(name="
|
| 49 |
datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
|
| 50 |
datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
|
| 51 |
datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
|
|
@@ -87,34 +84,9 @@ class Causal3D(datasets.GeneratorBasedBuilder):
|
|
| 87 |
]
|
| 88 |
|
| 89 |
def _generate_examples(self, data_dir):
|
| 90 |
-
# Find the .csv file
|
| 91 |
-
csv_files = list(Path(data_dir).rglob("*.csv"))
|
| 92 |
-
csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
|
| 93 |
-
if not csv_files:
|
| 94 |
-
print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
|
| 95 |
-
return # ✅ 跳过该 config,不报错
|
| 96 |
-
csv_path = csv_files[0]
|
| 97 |
-
df = pd.read_csv(csv_path)
|
| 98 |
-
if "image" not in df.columns:
|
| 99 |
-
print(f"\033[31m[SKIP] 'image' column not found in {csv_path}, skipping this config.\033[0m")
|
| 100 |
-
return
|
| 101 |
-
|
| 102 |
-
# sub_folders = [os.path.join(data_dir, i) for i in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, i))]
|
| 103 |
-
|
| 104 |
def color(text, code):
|
| 105 |
return f"\033[{code}m{text}\033[0m"
|
| 106 |
-
|
| 107 |
-
# print(color(f"data_dir: {data_dir}", "36")) # Cyan
|
| 108 |
-
# print(color(f"csv_path: {csv_path}", "33")) # Yellow
|
| 109 |
-
# print(color(f"csv_path.name: {csv_path.name}", "35")) # Magenta
|
| 110 |
-
# print(color(f"CSV columns: {list(df.columns)}", "32")) # Green
|
| 111 |
-
|
| 112 |
-
images = df["image"].tolist()
|
| 113 |
-
# images only contain image names
|
| 114 |
-
|
| 115 |
-
images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
|
| 116 |
-
|
| 117 |
-
|
| 118 |
# Load image paths
|
| 119 |
try:
|
| 120 |
image_files = {}
|
|
@@ -131,38 +103,61 @@ class Causal3D(datasets.GeneratorBasedBuilder):
|
|
| 131 |
except Exception as e:
|
| 132 |
print(color(f"Error loading images: {e}", "31")) # Red
|
| 133 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
try:
|
| 135 |
# Match CSV rows with image paths
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
|
| 168 |
except Exception as e:
|
|
|
|
| 23 |
_LICENSE = "CC-BY-4.0"
|
| 24 |
|
| 25 |
class Causal3D(datasets.GeneratorBasedBuilder):
|
|
|
|
|
|
|
|
|
|
| 26 |
DEFAULT_CONFIG_NAME = "real_scenes_Real_magnet_v3"
|
| 27 |
BUILDER_CONFIGS = [
|
| 28 |
# hypothetical_scenes
|
|
|
|
| 42 |
datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
|
| 43 |
datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
|
| 44 |
datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
|
| 45 |
+
# datasets.BuilderConfig(name="real_scenes_Real_Parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
|
| 46 |
datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
|
| 47 |
datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
|
| 48 |
datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
|
|
|
|
| 84 |
]
|
| 85 |
|
| 86 |
def _generate_examples(self, data_dir):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
def color(text, code):
|
| 88 |
return f"\033[{code}m{text}\033[0m"
|
| 89 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
# Load image paths
|
| 91 |
try:
|
| 92 |
image_files = {}
|
|
|
|
| 103 |
except Exception as e:
|
| 104 |
print(color(f"Error loading images: {e}", "31")) # Red
|
| 105 |
return
|
| 106 |
+
|
| 107 |
+
# Find the .csv file
|
| 108 |
+
csv_files = list(Path(data_dir).rglob("*.csv"))
|
| 109 |
+
csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
|
| 110 |
+
if not csv_files:
|
| 111 |
+
# print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
|
| 112 |
+
pass
|
| 113 |
+
# print(f"\033[33m[INFO] Found CSV: {csv_files}\033[0m")
|
| 114 |
+
csv_path = csv_files[0] if csv_files else None
|
| 115 |
+
df = pd.read_csv(csv_path) if csv_path else None
|
| 116 |
+
image_col_exists = True
|
| 117 |
+
if df is not None and "image" not in df.columns:
|
| 118 |
+
image_col_exists = False
|
| 119 |
+
|
| 120 |
+
images = df["image"].tolist() if image_col_exists and df is not None else []
|
| 121 |
+
images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
|
| 122 |
+
|
| 123 |
try:
|
| 124 |
# Match CSV rows with image paths
|
| 125 |
+
if df is None:
|
| 126 |
+
for i, j in tqdm(image_files.items(), desc="Processing images", unit="image"):
|
| 127 |
+
yield i, {
|
| 128 |
+
"image": j,
|
| 129 |
+
"file_name": i,
|
| 130 |
+
"metadata": None,
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
else:
|
| 134 |
+
for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
|
| 135 |
+
fname = row["ID"]
|
| 136 |
+
raw_record_img_path = images[idx] if images else "" #row["image"]
|
| 137 |
+
record_img_name = raw_record_img_path.split('/')[-1]
|
| 138 |
+
for part in parts:
|
| 139 |
+
if part == '':
|
| 140 |
+
record_img_path = record_img_name
|
| 141 |
+
else:
|
| 142 |
+
record_img_path = "/".join([part, record_img_name.strip()])
|
| 143 |
+
if "Water_flow_scene_render" in data_dir:
|
| 144 |
+
record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
|
| 145 |
+
if record_img_path in image_files:
|
| 146 |
+
# print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
|
| 147 |
+
yield idx, {
|
| 148 |
+
"image": image_files[record_img_path],
|
| 149 |
+
"file_name": fname,
|
| 150 |
+
"metadata": row.to_json(),
|
| 151 |
+
}
|
| 152 |
+
break
|
| 153 |
+
|
| 154 |
+
else:
|
| 155 |
+
yield idx, {
|
| 156 |
+
# "image": "",
|
| 157 |
+
"file_name": fname,
|
| 158 |
+
"metadata": row.to_json(),
|
| 159 |
+
}
|
| 160 |
+
break
|
| 161 |
|
| 162 |
|
| 163 |
except Exception as e:
|
README.md
CHANGED
|
@@ -8,6 +8,329 @@ pretty_name: Causal3D
|
|
| 8 |
tags:
|
| 9 |
- Causality
|
| 10 |
- Computer_Vision
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
# 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
|
| 13 |
|
|
|
|
| 8 |
tags:
|
| 9 |
- Causality
|
| 10 |
- Computer_Vision
|
| 11 |
+
dataset_info:
|
| 12 |
+
- config_name: hypothetical_scenes_Hypothetic_v2_linear
|
| 13 |
+
features:
|
| 14 |
+
- name: image
|
| 15 |
+
dtype: image
|
| 16 |
+
- name: file_name
|
| 17 |
+
dtype: string
|
| 18 |
+
- name: metadata
|
| 19 |
+
dtype: string
|
| 20 |
+
splits:
|
| 21 |
+
- name: train
|
| 22 |
+
num_bytes: 2197142
|
| 23 |
+
num_examples: 14368
|
| 24 |
+
download_size: 0
|
| 25 |
+
dataset_size: 2197142
|
| 26 |
+
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
|
| 27 |
+
features:
|
| 28 |
+
- name: image
|
| 29 |
+
dtype: image
|
| 30 |
+
- name: file_name
|
| 31 |
+
dtype: string
|
| 32 |
+
- name: metadata
|
| 33 |
+
dtype: string
|
| 34 |
+
splits:
|
| 35 |
+
- name: train
|
| 36 |
+
num_bytes: 1809956
|
| 37 |
+
num_examples: 10000
|
| 38 |
+
download_size: 0
|
| 39 |
+
dataset_size: 1809956
|
| 40 |
+
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
|
| 41 |
+
features:
|
| 42 |
+
- name: image
|
| 43 |
+
dtype: image
|
| 44 |
+
- name: file_name
|
| 45 |
+
dtype: string
|
| 46 |
+
- name: metadata
|
| 47 |
+
dtype: string
|
| 48 |
+
splits:
|
| 49 |
+
- name: train
|
| 50 |
+
num_bytes: 1397093
|
| 51 |
+
num_examples: 10000
|
| 52 |
+
download_size: 0
|
| 53 |
+
dataset_size: 1397093
|
| 54 |
+
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
|
| 55 |
+
features:
|
| 56 |
+
- name: image
|
| 57 |
+
dtype: image
|
| 58 |
+
- name: file_name
|
| 59 |
+
dtype: string
|
| 60 |
+
- name: metadata
|
| 61 |
+
dtype: string
|
| 62 |
+
splits:
|
| 63 |
+
- name: train
|
| 64 |
+
num_bytes: 1699598
|
| 65 |
+
num_examples: 10050
|
| 66 |
+
download_size: 0
|
| 67 |
+
dataset_size: 1699598
|
| 68 |
+
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
|
| 69 |
+
features:
|
| 70 |
+
- name: image
|
| 71 |
+
dtype: image
|
| 72 |
+
- name: file_name
|
| 73 |
+
dtype: string
|
| 74 |
+
- name: metadata
|
| 75 |
+
dtype: string
|
| 76 |
+
splits:
|
| 77 |
+
- name: train
|
| 78 |
+
num_bytes: 2053379
|
| 79 |
+
num_examples: 10000
|
| 80 |
+
download_size: 0
|
| 81 |
+
dataset_size: 2053379
|
| 82 |
+
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
|
| 83 |
+
features:
|
| 84 |
+
- name: image
|
| 85 |
+
dtype: image
|
| 86 |
+
- name: file_name
|
| 87 |
+
dtype: string
|
| 88 |
+
- name: metadata
|
| 89 |
+
dtype: string
|
| 90 |
+
splits:
|
| 91 |
+
- name: train
|
| 92 |
+
num_bytes: 2828217
|
| 93 |
+
num_examples: 10000
|
| 94 |
+
download_size: 0
|
| 95 |
+
dataset_size: 2828217
|
| 96 |
+
- config_name: hypothetical_scenes_Hypothetic_v5_linear
|
| 97 |
+
features:
|
| 98 |
+
- name: image
|
| 99 |
+
dtype: image
|
| 100 |
+
- name: file_name
|
| 101 |
+
dtype: string
|
| 102 |
+
- name: metadata
|
| 103 |
+
dtype: string
|
| 104 |
+
splits:
|
| 105 |
+
- name: train
|
| 106 |
+
num_bytes: 1956461
|
| 107 |
+
num_examples: 10000
|
| 108 |
+
download_size: 0
|
| 109 |
+
dataset_size: 1956461
|
| 110 |
+
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
|
| 111 |
+
features:
|
| 112 |
+
- name: image
|
| 113 |
+
dtype: image
|
| 114 |
+
- name: file_name
|
| 115 |
+
dtype: string
|
| 116 |
+
- name: metadata
|
| 117 |
+
dtype: string
|
| 118 |
+
splits:
|
| 119 |
+
- name: train
|
| 120 |
+
num_bytes: 1955921
|
| 121 |
+
num_examples: 10000
|
| 122 |
+
download_size: 0
|
| 123 |
+
dataset_size: 1955921
|
| 124 |
+
- config_name: hypothetical_scenes_rendered_h3_linear_128P
|
| 125 |
+
features:
|
| 126 |
+
- name: image
|
| 127 |
+
dtype: image
|
| 128 |
+
- name: file_name
|
| 129 |
+
dtype: string
|
| 130 |
+
- name: metadata
|
| 131 |
+
dtype: string
|
| 132 |
+
splits:
|
| 133 |
+
- name: train
|
| 134 |
+
num_bytes: 5425498
|
| 135 |
+
num_examples: 15000
|
| 136 |
+
download_size: 0
|
| 137 |
+
dataset_size: 5425498
|
| 138 |
+
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
|
| 139 |
+
features:
|
| 140 |
+
- name: image
|
| 141 |
+
dtype: image
|
| 142 |
+
- name: file_name
|
| 143 |
+
dtype: string
|
| 144 |
+
- name: metadata
|
| 145 |
+
dtype: string
|
| 146 |
+
splits:
|
| 147 |
+
- name: train
|
| 148 |
+
num_bytes: 3852500
|
| 149 |
+
num_examples: 10223
|
| 150 |
+
download_size: 0
|
| 151 |
+
dataset_size: 3852500
|
| 152 |
+
- config_name: hypothetical_scenes_rendered_h5_nonlinear
|
| 153 |
+
features:
|
| 154 |
+
- name: image
|
| 155 |
+
dtype: image
|
| 156 |
+
- name: file_name
|
| 157 |
+
dtype: string
|
| 158 |
+
- name: metadata
|
| 159 |
+
dtype: string
|
| 160 |
+
splits:
|
| 161 |
+
- name: train
|
| 162 |
+
num_bytes: 5459126
|
| 163 |
+
num_examples: 10360
|
| 164 |
+
download_size: 0
|
| 165 |
+
dataset_size: 5459126
|
| 166 |
+
- config_name: real_scenes_Real_Parabola
|
| 167 |
+
features:
|
| 168 |
+
- name: image
|
| 169 |
+
dtype: image
|
| 170 |
+
- name: file_name
|
| 171 |
+
dtype: string
|
| 172 |
+
- name: metadata
|
| 173 |
+
dtype: string
|
| 174 |
+
splits:
|
| 175 |
+
- name: train
|
| 176 |
+
num_bytes: 1323548
|
| 177 |
+
num_examples: 10000
|
| 178 |
+
download_size: 0
|
| 179 |
+
dataset_size: 1323548
|
| 180 |
+
- config_name: real_scenes_Real_magnet_v3
|
| 181 |
+
features:
|
| 182 |
+
- name: image
|
| 183 |
+
dtype: image
|
| 184 |
+
- name: file_name
|
| 185 |
+
dtype: string
|
| 186 |
+
- name: metadata
|
| 187 |
+
dtype: string
|
| 188 |
+
splits:
|
| 189 |
+
- name: train
|
| 190 |
+
num_bytes: 28397
|
| 191 |
+
num_examples: 481
|
| 192 |
+
download_size: 0
|
| 193 |
+
dataset_size: 28397
|
| 194 |
+
- config_name: real_scenes_Real_magnet_v3_5
|
| 195 |
+
features:
|
| 196 |
+
- name: image
|
| 197 |
+
dtype: image
|
| 198 |
+
- name: file_name
|
| 199 |
+
dtype: string
|
| 200 |
+
- name: metadata
|
| 201 |
+
dtype: string
|
| 202 |
+
splits:
|
| 203 |
+
- name: train
|
| 204 |
+
num_bytes: 93977
|
| 205 |
+
num_examples: 1503
|
| 206 |
+
download_size: 0
|
| 207 |
+
dataset_size: 93977
|
| 208 |
+
- config_name: real_scenes_Real_parabola_multi_view
|
| 209 |
+
features:
|
| 210 |
+
- name: image
|
| 211 |
+
dtype: image
|
| 212 |
+
- name: file_name
|
| 213 |
+
dtype: string
|
| 214 |
+
- name: metadata
|
| 215 |
+
dtype: string
|
| 216 |
+
splits:
|
| 217 |
+
- name: train
|
| 218 |
+
num_bytes: 0
|
| 219 |
+
num_examples: 0
|
| 220 |
+
download_size: 0
|
| 221 |
+
dataset_size: 0
|
| 222 |
+
- config_name: real_scenes_Real_spring_v3_256P
|
| 223 |
+
features:
|
| 224 |
+
- name: image
|
| 225 |
+
dtype: image
|
| 226 |
+
- name: file_name
|
| 227 |
+
dtype: string
|
| 228 |
+
- name: metadata
|
| 229 |
+
dtype: string
|
| 230 |
+
splits:
|
| 231 |
+
- name: train
|
| 232 |
+
num_bytes: 136325
|
| 233 |
+
num_examples: 450
|
| 234 |
+
download_size: 0
|
| 235 |
+
dataset_size: 136325
|
| 236 |
+
- config_name: real_scenes_Water_flow_scene_render
|
| 237 |
+
features:
|
| 238 |
+
- name: image
|
| 239 |
+
dtype: image
|
| 240 |
+
- name: file_name
|
| 241 |
+
dtype: string
|
| 242 |
+
- name: metadata
|
| 243 |
+
dtype: string
|
| 244 |
+
splits:
|
| 245 |
+
- name: train
|
| 246 |
+
num_bytes: 2792618
|
| 247 |
+
num_examples: 10000
|
| 248 |
+
download_size: 0
|
| 249 |
+
dataset_size: 2792618
|
| 250 |
+
- config_name: real_scenes_convex_len_render_images
|
| 251 |
+
features:
|
| 252 |
+
- name: image
|
| 253 |
+
dtype: image
|
| 254 |
+
- name: file_name
|
| 255 |
+
dtype: string
|
| 256 |
+
- name: metadata
|
| 257 |
+
dtype: string
|
| 258 |
+
splits:
|
| 259 |
+
- name: train
|
| 260 |
+
num_bytes: 72448
|
| 261 |
+
num_examples: 1078
|
| 262 |
+
download_size: 0
|
| 263 |
+
dataset_size: 72448
|
| 264 |
+
- config_name: real_scenes_real_pendulum
|
| 265 |
+
features:
|
| 266 |
+
- name: image
|
| 267 |
+
dtype: image
|
| 268 |
+
- name: file_name
|
| 269 |
+
dtype: string
|
| 270 |
+
- name: metadata
|
| 271 |
+
dtype: string
|
| 272 |
+
splits:
|
| 273 |
+
- name: train
|
| 274 |
+
num_bytes: 2925963
|
| 275 |
+
num_examples: 9999
|
| 276 |
+
download_size: 0
|
| 277 |
+
dataset_size: 2925963
|
| 278 |
+
- config_name: real_scenes_rendered_magnetic_128
|
| 279 |
+
features:
|
| 280 |
+
- name: image
|
| 281 |
+
dtype: image
|
| 282 |
+
- name: file_name
|
| 283 |
+
dtype: string
|
| 284 |
+
- name: metadata
|
| 285 |
+
dtype: string
|
| 286 |
+
splits:
|
| 287 |
+
- name: train
|
| 288 |
+
num_bytes: 2324526
|
| 289 |
+
num_examples: 8350
|
| 290 |
+
download_size: 0
|
| 291 |
+
dataset_size: 2324526
|
| 292 |
+
- config_name: real_scenes_rendered_reflection_128P
|
| 293 |
+
features:
|
| 294 |
+
- name: image
|
| 295 |
+
dtype: image
|
| 296 |
+
- name: file_name
|
| 297 |
+
dtype: string
|
| 298 |
+
- name: metadata
|
| 299 |
+
dtype: string
|
| 300 |
+
splits:
|
| 301 |
+
- name: train
|
| 302 |
+
num_bytes: 2765222
|
| 303 |
+
num_examples: 9995
|
| 304 |
+
download_size: 0
|
| 305 |
+
dataset_size: 2765222
|
| 306 |
+
- config_name: real_scenes_seesaw_scene_128P
|
| 307 |
+
features:
|
| 308 |
+
- name: image
|
| 309 |
+
dtype: image
|
| 310 |
+
- name: file_name
|
| 311 |
+
dtype: string
|
| 312 |
+
- name: metadata
|
| 313 |
+
dtype: string
|
| 314 |
+
splits:
|
| 315 |
+
- name: train
|
| 316 |
+
num_bytes: 2275814
|
| 317 |
+
num_examples: 10000
|
| 318 |
+
download_size: 0
|
| 319 |
+
dataset_size: 2275814
|
| 320 |
+
- config_name: real_scenes_spring_scene_128P
|
| 321 |
+
features:
|
| 322 |
+
- name: image
|
| 323 |
+
dtype: image
|
| 324 |
+
- name: file_name
|
| 325 |
+
dtype: string
|
| 326 |
+
- name: metadata
|
| 327 |
+
dtype: string
|
| 328 |
+
splits:
|
| 329 |
+
- name: train
|
| 330 |
+
num_bytes: 2547386
|
| 331 |
+
num_examples: 10000
|
| 332 |
+
download_size: 0
|
| 333 |
+
dataset_size: 2547386
|
| 334 |
---
|
| 335 |
# 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
|
| 336 |
|