DsL
commited on
Commit
·
d8f7f26
1
Parent(s):
53e6548
update readme
Browse files
README.md
CHANGED
@@ -145,10 +145,10 @@ dataset_info:
|
|
145 |
dtype: string
|
146 |
splits:
|
147 |
- name: train
|
148 |
-
num_bytes:
|
149 |
num_examples: 10223
|
150 |
download_size: 0
|
151 |
-
dataset_size:
|
152 |
- config_name: hypothetical_scenes_rendered_h5_nonlinear
|
153 |
features:
|
154 |
- name: image
|
@@ -336,6 +336,44 @@ dataset_info:
|
|
336 |
|
337 |
**Causal3D** is a comprehensive benchmark designed to evaluate models’ abilities to uncover *latent causal relations* from structured and visual data. This dataset integrates **3D-rendered scenes** with **tabular causal annotations**, providing a unified testbed for advancing *causal discovery*, *causal representation learning*, and *causal reasoning* with **vision-language models (VLMs)** and **large language models (LLMs)**.
|
338 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
---
|
340 |
|
341 |
## 📌 Overview
|
|
|
145 |
dtype: string
|
146 |
splits:
|
147 |
- name: train
|
148 |
+
num_bytes: 3239120
|
149 |
num_examples: 10223
|
150 |
download_size: 0
|
151 |
+
dataset_size: 3239120
|
152 |
- config_name: hypothetical_scenes_rendered_h5_nonlinear
|
153 |
features:
|
154 |
- name: image
|
|
|
336 |
|
337 |
**Causal3D** is a comprehensive benchmark designed to evaluate models’ abilities to uncover *latent causal relations* from structured and visual data. This dataset integrates **3D-rendered scenes** with **tabular causal annotations**, providing a unified testbed for advancing *causal discovery*, *causal representation learning*, and *causal reasoning* with **vision-language models (VLMs)** and **large language models (LLMs)**.
|
338 |
|
339 |
+
## 📚 Usage
|
340 |
+
|
341 |
+
#### 🔹 Option 1: Load from Hugging Face
|
342 |
+
|
343 |
+
You can easily load a specific scene using the Hugging Face `datasets` library:
|
344 |
+
|
345 |
+
```python
|
346 |
+
from datasets import load_dataset
|
347 |
+
|
348 |
+
dataset = load_dataset(
|
349 |
+
"LLDDSS/Causal3D",
|
350 |
+
name="real_scenes_Real_Parabola",
|
351 |
+
download_mode="force_redownload", # Optional: force re-download
|
352 |
+
trust_remote_code=True # Required for custom dataset loading
|
353 |
+
)
|
354 |
+
|
355 |
+
print(dataset)
|
356 |
+
```
|
357 |
+
|
358 |
+
#### 🔹 Option 2: Download via [**Kaggle**](https://www.kaggle.com/datasets/dsliu0011/causal3d-image-dataset) + Croissant
|
359 |
+
```
|
360 |
+
import mlcroissant as mlc
|
361 |
+
import pandas as pd
|
362 |
+
|
363 |
+
# Load the dataset metadata from Kaggle
|
364 |
+
croissant_dataset = mlc.Dataset(
|
365 |
+
"https://www.kaggle.com/datasets/dsliu0011/causal3d-image-dataset/croissant/download"
|
366 |
+
)
|
367 |
+
|
368 |
+
# List available record sets
|
369 |
+
record_sets = croissant_dataset.metadata.record_sets
|
370 |
+
print(record_sets)
|
371 |
+
|
372 |
+
# Load records from the first record set
|
373 |
+
df = pd.DataFrame(croissant_dataset.records(record_set=record_sets[0].uuid))
|
374 |
+
print(df.head())
|
375 |
+
```
|
376 |
+
|
377 |
---
|
378 |
|
379 |
## 📌 Overview
|