|
import datasets |
|
import pandas as pd |
|
import os |
|
from pathlib import Path |
|
from tqdm import tqdm |
|
|
|
_CITATION = """\ |
|
@article{liu2025causal3d, |
|
title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data}, |
|
author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing}, |
|
journal={arXiv preprint arXiv:2503.04852}, |
|
year={2025} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. |
|
It includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D" |
|
_LICENSE = "CC-BY-4.0" |
|
|
|
class Causal3dDataset(datasets.GeneratorBasedBuilder): |
|
DEFAULT_CONFIG_NAME = "Real_Water_flow" |
|
BUILDER_CONFIGS = [ |
|
|
|
datasets.BuilderConfig(name="Hypothetical_V2_linear", version=datasets.Version("1.0.0"), description="Hypothetical_V2_linear scene"), |
|
datasets.BuilderConfig(name="Hypothetical_V2_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetical_V2_nonlinear scene"), |
|
datasets.BuilderConfig(name="Hypothetical_V3_fully_connected_linear", version=datasets.Version("1.0.0"), description="Hypothetical_V3_fully_connected_linear scene"), |
|
datasets.BuilderConfig(name="Hypothetical_V3_v_structure_linear", version=datasets.Version("1.0.0"), description="Hypothetical_V3_v_structure_linear scene"), |
|
datasets.BuilderConfig(name="Hypothetical_V3_v_structure_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetical_V3_v_structure_nonlinear scene"), |
|
datasets.BuilderConfig(name="Hypothetical_V4_linear", version=datasets.Version("1.0.0"), description="Hypothetical_V4_linear scene"), |
|
datasets.BuilderConfig(name="Hypothetical_V4_v_structure_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetical_V4_v_structure_nonlinear scene"), |
|
datasets.BuilderConfig(name="Hypothetical_V4_v_structure_linear", version=datasets.Version("1.0.0"), description="Hypothetical_V4_v_structure_linear scene"), |
|
datasets.BuilderConfig(name="Hypothetical_V5_linear", version=datasets.Version("1.0.0"), description="Hypothetical_V5_linear scene"), |
|
datasets.BuilderConfig(name="Hypothetical_V5_v_structure_linear", version=datasets.Version("1.0.0"), description="Hypothetical_V5_v_structure_linear scene"), |
|
datasets.BuilderConfig(name="Hypothetical_V5_v_structure_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetical_V5_v_structure_nonlinear scene"), |
|
|
|
|
|
datasets.BuilderConfig(name="Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"), |
|
datasets.BuilderConfig(name="Real_Magnet", version=datasets.Version("1.0.0"), description="Real_Magnet scene"), |
|
datasets.BuilderConfig(name="Real_Spring", version=datasets.Version("1.0.0"), description="Real_Spring scene"), |
|
datasets.BuilderConfig(name="Real_Water_flow", version=datasets.Version("1.0.0"), description="Real_Water_flow scene"), |
|
datasets.BuilderConfig(name="Real_Seesaw", version=datasets.Version("1.0.0"), description="Real_Seesaw scene"), |
|
datasets.BuilderConfig(name="Real_Reflection", version=datasets.Version("1.0.0"), description="Real_Reflection scene"), |
|
datasets.BuilderConfig(name="Real_Pendulum", version=datasets.Version("1.0.0"), description="Real_Pendulum scene"), |
|
datasets.BuilderConfig(name="Real_Convex_len", version=datasets.Version("1.0.0"), description="Real_Convex_len scene"), |
|
|
|
|
|
datasets.BuilderConfig(name="MV_Pendulum", version=datasets.Version("1.0.0"), description="Multi_View_Real_Pendulum scene"), |
|
|
|
|
|
|
|
datasets.BuilderConfig(name="MV_H3_v_structure_linear", version=datasets.Version("1.0.0"), description="MV_H3_v_structure_linear scene"), |
|
datasets.BuilderConfig(name="MV_H2_linear", version=datasets.Version("1.0.0"), description="MV_H2_linear scene"), |
|
datasets.BuilderConfig(name="MV_H2_nonlinear", version=datasets.Version("1.0.0"), description="MV_H2_nonlinear scene"), |
|
datasets.BuilderConfig(name="MV_H4_fully_connected_linear", version=datasets.Version("1.0.0"), description="MV_H4_fully_connected_linear scene"), |
|
datasets.BuilderConfig(name="MV_H4_v_structure_linear", version=datasets.Version("1.0.0"), description="MV_H4_v_structure_linear scene"), |
|
datasets.BuilderConfig(name="MV_H4_v_structure_nonlinear", version=datasets.Version("1.0.0"), description="MV_H4_v_structure_nonlinear scene"), |
|
datasets.BuilderConfig(name="MV_H5_fully_connected_linear", version=datasets.Version("1.0.0"), description="MV_H5_fully_connected_linear scene"), |
|
datasets.BuilderConfig(name="MV_H5_v_structure_linear", version=datasets.Version("1.0.0"), description="MV_H5_v_structure_linear scene"), |
|
datasets.BuilderConfig(name="MV_H5_v_structure_nonlinear", version=datasets.Version("1.0.0"), description="MV_H5_v_structure_nonlinear scene"), |
|
|
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"image": datasets.Image(), |
|
"file_name": datasets.Value("string"), |
|
"metadata": datasets.Value("string"), |
|
}), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
print(">>>>>>>>>>>>>>>>>>>>>>> Starting to load dataset <<<<<<<<<<<<<<<<<<<<<<<") |
|
parts = self.config.name.split("_", 1) |
|
category = parts[0] |
|
scene = parts[1] |
|
|
|
local_scene_dir = os.path.join(category, scene) |
|
|
|
if os.path.exists(local_scene_dir): |
|
data_dir = local_scene_dir |
|
print(f"Using local folder: {data_dir}") |
|
else: |
|
zip_name = f"{self.config.name}.zip" |
|
archive_path = dl_manager.download_and_extract(zip_name) |
|
data_dir = archive_path |
|
print(f"Downloaded and extracted: {zip_name}") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_dir": data_dir}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_dir): |
|
image_files = {} |
|
for ext in ("*.png", "*.jpg", "*.jpeg"): |
|
for img_path in Path(data_dir).rglob(ext): |
|
relative = str(img_path.relative_to(data_dir)) |
|
image_files[relative] = str(img_path) |
|
|
|
csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")] |
|
df = pd.read_csv(csv_files[0]) if csv_files else None |
|
|
|
if df is not None and "imgs" in df.columns: |
|
images = df["imgs"].tolist() |
|
else: |
|
images = [] |
|
|
|
for idx, row in tqdm(df.iterrows(), total=len(df)) if df is not None else enumerate(image_files): |
|
if df is not None: |
|
fname = row["imgs"] if "imgs" in row else str(idx) |
|
|
|
|
|
try: |
|
image_name = images[idx].split("/")[-1].split(".")[0] if images else "" |
|
record_img_path = next((key for key in image_files if image_name in key), None) |
|
except Exception as e: |
|
print(f"Error: {e} in row {idx}, using index as file name") |
|
print(images[idx]) |
|
record_img_path = None |
|
break |
|
|
|
|
|
|
|
if not os.path.exists(image_files[record_img_path]) if record_img_path else None: |
|
raise FileNotFoundError(f"Image file not found: {image_files[record_img_path]}") |
|
|
|
yield idx, { |
|
"image": image_files[record_img_path] if record_img_path else None, |
|
"file_name": fname, |
|
"metadata": row.to_json(), |
|
} |
|
else: |
|
fname = Path(image_files[idx]).stem |
|
yield idx, { |
|
"image": image_files[idx], |
|
"file_name": fname, |
|
"metadata": None, |
|
} |
|
|