DsL commited on
Commit
7f66eeb
·
1 Parent(s): 6b911a1
Files changed (1) hide show
  1. Causal3D_Dataset.py +1 -84
Causal3D_Dataset.py CHANGED
@@ -86,12 +86,12 @@ class Causal3dDataset(datasets.GeneratorBasedBuilder):
86
  ]
87
 
88
  def _generate_examples(self, data_dir):
89
- print(f"Generating examples from: {data_dir}")
90
  image_files = {}
91
  for ext in ("*.png", "*.jpg", "*.jpeg"):
92
  for img_path in Path(data_dir).rglob(ext):
93
  relative = str(img_path.relative_to(data_dir))
94
  image_files[relative] = str(img_path)
 
95
 
96
  csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
97
  df = pd.read_csv(csv_files[0]) if csv_files else None
@@ -118,86 +118,3 @@ class Causal3dDataset(datasets.GeneratorBasedBuilder):
118
  "file_name": fname,
119
  "metadata": None,
120
  }
121
-
122
-
123
- # def _generate_examples(self, data_dir):
124
- # def color(text, code):
125
- # return f"\033[{code}m{text}\033[0m"
126
- # print("load data from {}".format(data_dir))
127
- # try:
128
- # image_files = {}
129
- # for ext in ("*.png", "*.jpg", "*.jpeg"):
130
- # for img_path in Path(data_dir).rglob(ext):
131
- # relative_path = str(img_path.relative_to(data_dir))
132
- # image_files[relative_path] = str(img_path)
133
- # parts = [i.split('/')[0] for i in list(image_files.keys())]
134
- # parts = set(parts)
135
- # if "part_000" not in parts:
136
- # parts= ['']
137
-
138
-
139
- # except Exception as e:
140
- # print(color(f"Error loading images: {e}", "31")) # Red
141
- # return
142
-
143
- # # Find the .csv file
144
- # csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
145
- # if not csv_files:
146
- # # print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
147
- # pass
148
- # # print(f"\033[33m[INFO] Found CSV: {csv_files}\033[0m")
149
- # csv_path = csv_files[0] if csv_files else None
150
- # df = pd.read_csv(csv_path) if csv_path else None
151
- # image_col_exists = True
152
- # if df is not None and "imgs" not in df.columns:
153
- # image_col_exists = False
154
-
155
- # images = df["imgs"].tolist() if image_col_exists and df is not None else []
156
- # images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
157
-
158
- # try:
159
- # # Match CSV rows with image paths
160
- # if df is None:
161
- # for i, j in tqdm(image_files.items(), desc="Processing images", unit="image"):
162
- # yield i, {
163
- # "image": j,
164
- # "file_name": i,
165
- # "metadata": None,
166
- # }
167
-
168
- # else:
169
- # for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
170
- # fname = row["imgs"]
171
- # raw_record_img_path = row["imgs"] #images[idx] if images else "" #row["image"]
172
- # record_img_name = raw_record_img_path.split('/')[-1]
173
- # render_img_path = record_img_name
174
-
175
-
176
- # # for part in parts:
177
- # # if part == '':
178
- # # record_img_path = record_img_name
179
- # # else:
180
- # # record_img_path = "/".join([part, record_img_name.strip()])
181
- # # if "Water_flow_scene_render" in data_dir:
182
- # # record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
183
- # # if record_img_path in image_files:
184
- # # # print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
185
- # # yield idx, {
186
- # # "image": image_files[record_img_path],
187
- # # "file_name": fname,
188
- # # "metadata": row.to_json(),
189
- # # }
190
- # # break
191
-
192
- # # else:
193
- # # yield idx, {
194
- # # # "image": "",
195
- # # "file_name": fname,
196
- # # "metadata": row.to_json(),
197
- # # }
198
- # # break
199
-
200
-
201
- # except Exception as e:
202
- # print(color(f"Error processing CSV rows: {e}", "31"))
203
-
 
86
  ]
87
 
88
  def _generate_examples(self, data_dir):
 
89
  image_files = {}
90
  for ext in ("*.png", "*.jpg", "*.jpeg"):
91
  for img_path in Path(data_dir).rglob(ext):
92
  relative = str(img_path.relative_to(data_dir))
93
  image_files[relative] = str(img_path)
94
+ print(f"Found {len(image_files)} images in {data_dir}")
95
 
96
  csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
97
  df = pd.read_csv(csv_files[0]) if csv_files else None
 
118
  "file_name": fname,
119
  "metadata": None,
120
  }