File size: 29,604 Bytes
82732bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "a116024b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:15.098589Z",
"iopub.status.busy": "2025-03-25T05:15:15.098483Z",
"iopub.status.idle": "2025-03-25T05:15:15.263296Z",
"shell.execute_reply": "2025-03-25T05:15:15.262943Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Essential_Thrombocythemia\"\n",
"cohort = \"GSE12295\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Essential_Thrombocythemia\"\n",
"in_cohort_dir = \"../../input/GEO/Essential_Thrombocythemia/GSE12295\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Essential_Thrombocythemia/GSE12295.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Essential_Thrombocythemia/gene_data/GSE12295.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE12295.csv\"\n",
"json_path = \"../../output/preprocess/Essential_Thrombocythemia/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "f87c00ef",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "70f656be",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:15.264744Z",
"iopub.status.busy": "2025-03-25T05:15:15.264604Z",
"iopub.status.idle": "2025-03-25T05:15:15.282299Z",
"shell.execute_reply": "2025-03-25T05:15:15.282012Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Class prediction models of thrombocytosis using genetic biomarkers\"\n",
"!Series_summary\t\"Using custom spotted oligonucelotide platelet-focused arrays, platelet samples were compared. 48 health controls, 23 reactive thrombocytosis (RT) and 24 essential thrombocythemia (ET) samples were compared. An 11-biomarker gene subset was identified that discriminated among the three cohorts with 86.3% accuracy.\"\n",
"!Series_overall_design\t\"70 mer oligonucleotides were spotted in quadruplicate and hybridized versus reference RNA in two color method. Spiked control RNAs were also included.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['Essential thrombocythemia Patient Platelet', 'Reactive Thrombocytosis Patient platelets', 'Normal Patient Platelets']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "55ea216e",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f78c13c9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:15.283240Z",
"iopub.status.busy": "2025-03-25T05:15:15.283137Z",
"iopub.status.idle": "2025-03-25T05:15:15.292458Z",
"shell.execute_reply": "2025-03-25T05:15:15.292184Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of clinical features:\n",
"{'GSM309072': [1.0], 'GSM309073': [1.0], 'GSM309074': [1.0], 'GSM309075': [1.0], 'GSM309076': [1.0], 'GSM309077': [1.0], 'GSM309078': [1.0], 'GSM309079': [1.0], 'GSM309080': [1.0], 'GSM309081': [1.0], 'GSM309082': [1.0], 'GSM309083': [1.0], 'GSM309084': [1.0], 'GSM309085': [1.0], 'GSM309086': [1.0], 'GSM309087': [1.0], 'GSM309088': [1.0], 'GSM309089': [0.0], 'GSM309090': [1.0], 'GSM309091': [0.0], 'GSM309092': [1.0], 'GSM309093': [1.0], 'GSM309094': [1.0], 'GSM309095': [0.0], 'GSM309096': [0.0], 'GSM309097': [0.0], 'GSM309098': [0.0], 'GSM309099': [0.0], 'GSM309100': [0.0], 'GSM309101': [0.0], 'GSM309102': [0.0], 'GSM309103': [0.0], 'GSM309104': [0.0], 'GSM309105': [0.0], 'GSM309106': [0.0], 'GSM309107': [0.0], 'GSM309108': [0.0], 'GSM309109': [0.0], 'GSM309110': [0.0], 'GSM309111': [0.0], 'GSM309112': [0.0], 'GSM309113': [0.0], 'GSM309114': [0.0], 'GSM309115': [0.0], 'GSM309116': [0.0], 'GSM309117': [0.0], 'GSM309118': [0.0], 'GSM309119': [0.0], 'GSM309120': [0.0], 'GSM309121': [0.0], 'GSM309122': [0.0], 'GSM309123': [0.0], 'GSM309124': [0.0], 'GSM309125': [0.0], 'GSM309126': [0.0], 'GSM309127': [0.0], 'GSM309128': [0.0], 'GSM309129': [0.0], 'GSM309130': [0.0], 'GSM309131': [0.0], 'GSM309132': [0.0], 'GSM309133': [0.0], 'GSM309134': [0.0], 'GSM309135': [0.0], 'GSM309136': [0.0], 'GSM309137': [0.0], 'GSM309138': [0.0], 'GSM309139': [0.0], 'GSM309140': [0.0], 'GSM309141': [0.0], 'GSM309142': [0.0], 'GSM309143': [0.0], 'GSM309144': [0.0], 'GSM309145': [0.0], 'GSM309146': [0.0], 'GSM309147': [0.0], 'GSM309148': [0.0], 'GSM309149': [1.0], 'GSM309150': [1.0], 'GSM309151': [0.0], 'GSM309152': [0.0], 'GSM309153': [0.0], 'GSM309154': [0.0], 'GSM309155': [0.0], 'GSM309156': [0.0], 'GSM309157': [0.0], 'GSM309158': [0.0], 'GSM309159': [0.0], 'GSM309160': [0.0], 'GSM309161': [0.0], 'GSM309162': [0.0], 'GSM309163': [0.0], 'GSM309164': [0.0], 'GSM309165': [0.0], 'GSM309166': [1.0]}\n",
"Clinical data saved to ../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE12295.csv\n"
]
}
],
"source": [
"# Step 1: Determine gene expression data availability\n",
"# Based on series title and overall design, this appears to be a gene expression dataset\n",
"# using oligonucleotide arrays with platelet samples\n",
"is_gene_available = True\n",
"\n",
"# Step 2: Clinical feature availability and type conversion\n",
"# From sample characteristics, we can see that row 0 contains information about patient type\n",
"# which includes \"Essential thrombocythemia\", \"Reactive Thrombocytosis\", and \"Normal\"\n",
"# This is the trait information we need for Essential_Thrombocythemia\n",
"\n",
"# 2.1 Data Availability\n",
"trait_row = 0 # The trait information is in row 0\n",
"age_row = None # No age information found\n",
"gender_row = None # No gender information found\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait information to binary format (0 or 1)\"\"\"\n",
" if isinstance(value, str):\n",
" # Extract value after colon if it exists\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Check if \"Essential thrombocythemia\" is in the value\n",
" if \"Essential thrombocythemia\" in value:\n",
" return 1\n",
" elif \"Normal\" in value or \"Reactive Thrombocytosis\" in value:\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age information to numeric format\"\"\"\n",
" # Not needed since age data is not available\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender information to binary format (0 for female, 1 for male)\"\"\"\n",
" # Not needed since gender data is not available\n",
" return None\n",
"\n",
"# Step 3: Save metadata\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# Step 4: Clinical Feature Extraction (if trait data is available)\n",
"if trait_row is not None:\n",
" # Load the clinical data (assuming clinical_data is already loaded)\n",
" try:\n",
" clinical_data\n",
" except NameError:\n",
" print(\"Clinical data not loaded yet. Loading it now.\")\n",
" # This is a placeholder. In a real scenario, clinical_data would be loaded from a previous step\n",
" # Since it's not provided, we'll create a placeholder to avoid errors\n",
" clinical_data = pd.DataFrame()\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the dataframe\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=True)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "2a09001b",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d7869e98",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:15.293473Z",
"iopub.status.busy": "2025-03-25T05:15:15.293368Z",
"iopub.status.idle": "2025-03-25T05:15:15.308089Z",
"shell.execute_reply": "2025-03-25T05:15:15.307789Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First 20 gene/probe identifiers:\n",
"Index(['1001', '1002', '1003', '1004', '1005', '1006', '1007', '1008', '1009',\n",
" '1010', '1011', '1012', '1013', '1014', '1015', '1016', '1017', '1018',\n",
" '1019', '1020'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. First get the file paths again to access the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(\"First 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "4a760222",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ea0f74d6",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:15.309053Z",
"iopub.status.busy": "2025-03-25T05:15:15.308943Z",
"iopub.status.idle": "2025-03-25T05:15:15.310666Z",
"shell.execute_reply": "2025-03-25T05:15:15.310381Z"
}
},
"outputs": [],
"source": [
"# These identifiers ('1001', '1002', etc.) are not human gene symbols.\n",
"# They appear to be numeric probe IDs that need to be mapped to gene symbols.\n",
"# Human gene symbols typically look like BRCA1, TP53, IL6, etc.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "e2871c51",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3477c132",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:15.311677Z",
"iopub.status.busy": "2025-03-25T05:15:15.311575Z",
"iopub.status.idle": "2025-03-25T05:15:15.387618Z",
"shell.execute_reply": "2025-03-25T05:15:15.387302Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['1001', '1002', '1003', '1004', '1005'], 'ProbeID': ['1405_i_at', '1773_at', '200024_at', '200033_at', '200063_s_at'], 'Length': ['69', '69', '70', '70', '70'], 'TM': [76.668, 81.422, 78.843, 74.743, 74.743], 'Conc. (uM)': [50.0, 50.0, 50.0, 50.0, 50.0], 'Vol. (uL)': [200.0, 200.0, 200.0, 200.0, 200.0], 'SEQUENCE': ['AAAAGCTTCCCCAACTAAAGCCTAGAAGAGCTTCTGAGGCGCTGCTTTGTCAAAAGGAAGTCTCTAGGT', 'AGCTTAAGGATGAGACATCGGCAGAGCCTGCAACCGACTAGAGGACCTGGGTCCCGGCAGCTCTTTGCT', 'TCCTCGAACTCCTATGCCATTAAGAAGAAGGACGAGCTGGAGCGTGTGGCCAAGTCCAACCGCTGATTTT', 'TGCTACTGCAGCTGCACCTATGATTGGTTATCCAATGCCAACAGGATATTCCCAATAAGACTTTAGAAGT', 'AGAGTGAGAACTTTCCCTACCGTGTTTGATAAATGTTGTCCAGGTTCTATTGCCAAGAATGTGTTGTCCA'], 'Gene Symbol': ['CCL5', 'FNTB', '---', 'DDX5', 'NPM1'], 'ORF': ['CCL5', 'FNTB', nan, 'DDX5', 'NPM1'], 'SPOT_ID': [nan, nan, '200024_at', nan, nan]}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "752a4010",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3cf14881",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:15.388958Z",
"iopub.status.busy": "2025-03-25T05:15:15.388686Z",
"iopub.status.idle": "2025-03-25T05:15:15.411828Z",
"shell.execute_reply": "2025-03-25T05:15:15.411537Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping preview:\n",
"{'ID': ['1001', '1002', '1003', '1004', '1005'], 'Gene': ['CCL5', 'FNTB', '---', 'DDX5', 'NPM1']}\n",
"Gene expression data preview after mapping:\n",
"{'GSM309072': [0.3613, 1.2385, 3.8373999999999997, 1.0297, 1.1287], 'GSM309073': [2.2002, 0.1765, 0.9791000000000001, -0.5281, 1.7099], 'GSM309074': [0.2529, 1.2249, 1.4834, 0.3542, 0.6599], 'GSM309075': [0.222, 1.194, 1.5643, 0.2396, 0.629], 'GSM309076': [0.0, -0.2831, 0.7523000000000001, 1.5443, 0.4921], 'GSM309077': [0.0, 0.371, -2.1963, 0.0623, -0.1802], 'GSM309078': [0.0, -0.9493, -1.4156, -1.1107, 0.0], 'GSM309079': [-3.2136, -0.3648, -0.7977, 0.0715, -0.5518], 'GSM309080': [0.0, -1.5601, -7.0526, -2.5894, -1.1948], 'GSM309081': [0.0, 1.6709, 4.8239, 0.8932, 1.7434], 'GSM309082': [-0.0265, 0.6641, 1.0421, -1.0281, -0.6279], 'GSM309083': [0.7839, -0.8244, -2.0099, -0.3996, 1.149], 'GSM309084': [-3.1558, -1.4091, -3.7744, -1.3303, -1.4615], 'GSM309085': [0.0, 0.0, 0.0, 1.0552, 0.0], 'GSM309086': [0.0, 0.0, 2.016, 0.0699, 0.0], 'GSM309087': [0.0, 0.1945, 0.0, 0.4222, 0.0], 'GSM309088': [0.0, 0.0, -1.0885, -0.0391, -0.2265], 'GSM309089': [-1.519, 0.9638, -0.6178000000000001, 0.0696, 0.6705], 'GSM309090': [0.0, -1.1378, -1.213, 0.5458, 0.2208], 'GSM309091': [0.0, 0.5391, 2.1229999999999998, 1.556, 1.3992], 'GSM309092': [0.0, 0.8574, 1.766, 0.5056, -0.2356], 'GSM309093': [0.0, -0.1333, 1.5826, 0.0189, 0.0], 'GSM309094': [0.0, 1.0775, 1.3574, 0.1331, -1.6419], 'GSM309095': [0.0, 1.3461, 1.5451000000000001, -0.2872, 1.3072], 'GSM309096': [0.0, 0.0297, -1.4036000000000002, 0.0649, -0.6549], 'GSM309097': [0.0, 0.5596, 3.9409, 0.3991, 1.7206], 'GSM309098': [0.6893, 1.3763, 3.7793, -0.2381, 1.9205], 'GSM309099': [0.0, 1.3028, 5.6052, 1.2953, 2.8148], 'GSM309100': [0.0, -0.0847, -5.5847, -1.8389, 0.7864], 'GSM309101': [0.0, 0.3395, 3.6105, 0.9164, 0.0], 'GSM309102': [0.0, -1.2011, -2.7195, -0.5296, 0.2284], 'GSM309103': [0.0, -0.6915, -3.7036, -3.9667, -0.3136], 'GSM309104': [0.0, -1.294, -1.0558, -0.9046, 0.0], 'GSM309105': [0.0, 1.551, 0.0, 1.259, 2.8663], 'GSM309106': [0.0, -0.0214, 1.0021, -0.2993, -0.7268], 'GSM309107': [0.0, -0.7853, -0.6104, -1.9839, -0.6835], 'GSM309108': [-1.4821, -0.0309, -2.4136, -0.6209, 0.2303], 'GSM309109': [-0.6151, 0.1763, 1.9387, 1.0081, -2.5828], 'GSM309110': [-0.1323, 0.6175, 0.7125000000000001, -0.1722, -0.0692], 'GSM309111': [1.3508, 1.148, 4.1967, 1.1691, 0.7933], 'GSM309112': [0.0409, 1.0696, 2.2758, 0.3195, 0.7553], 'GSM309113': [-0.3511, 0.8563, -0.4036, 1.012, 0.8532], 'GSM309114': [0.0, 1.7623, 0.0, 0.018, 0.0], 'GSM309115': [0.0, 0.076, -2.5332, 1.846, 1.2725], 'GSM309116': [-0.9815, -0.302, 0.0, 0.0, 0.0], 'GSM309117': [0.0, 0.6294, 4.6808, 1.1432, 2.0719], 'GSM309118': [0.0, 2.4793, 4.9186, 0.0, 1.8317], 'GSM309119': [0.0, 1.5272, 3.3418, 1.4698, 1.0476], 'GSM309120': [0.0, 0.2517, -0.5357, -0.7192, -1.7276], 'GSM309121': [0.0, -1.4377, -2.2374, -1.9243, -2.5887], 'GSM309122': [0.0, -1.7137, -3.3864, -3.8124, -3.3397], 'GSM309123': [0.0, 1.656, 3.4787999999999997, 0.5698, 1.5321], 'GSM309124': [0.0, 2.3282, 1.4104, 1.6687, 2.0998], 'GSM309125': [0.0, 0.8636, 2.8536, 1.07, 0.8455], 'GSM309126': [0.0, -1.4459, -1.0336, -0.5223, -2.1063], 'GSM309127': [0.0, 1.4965, 3.6075, 0.129, 3.1556], 'GSM309128': [0.1379, 1.3935, 2.7613, 0.9427, 2.1999], 'GSM309129': [1.2156, 2.8242, 6.8843, 2.2627, 4.7448], 'GSM309130': [0.0, -0.7558, 1.5112, -1.5102, 0.0], 'GSM309131': [0.3525, 1.8534, 1.1275, 1.844, 0.0], 'GSM309132': [0.0, 1.7093, 2.6828000000000003, 1.0324, 1.7875], 'GSM309133': [0.0, 1.3018, 1.491, 0.5426, -0.117], 'GSM309134': [-0.2891, 1.1009, 1.9446999999999999, -0.375, -0.0111], 'GSM309135': [0.0, 0.9167, 2.5248999999999997, -0.7523, -0.063], 'GSM309136': [0.0, -0.6571, 0.0, -0.8067, -0.9832], 'GSM309137': [0.0, 0.8455, -0.3629, -1.0066, 0.3992], 'GSM309138': [0.0, 0.9634, 0.814, 0.6151, 2.3526], 'GSM309139': [0.0, -0.9418, -1.0356, -1.767, -0.0553], 'GSM309140': [-0.1069, -1.387, -2.0241, -0.5792, -1.6081], 'GSM309141': [0.0, -0.0727, 0.1575, -1.3271, -0.3351], 'GSM309142': [1.8101, 2.6405, 6.577400000000001, 3.0272, 3.1111], 'GSM309143': [0.0, -1.2786, -2.9162, -2.8368, -1.7426], 'GSM309144': [0.0, 0.658, 1.3676, 0.5045, -1.0619], 'GSM309145': [0.0, -1.1593, -0.585, -0.2536, -0.4637], 'GSM309146': [0.0, -1.1261, 2.6986, -0.8031, -0.6314], 'GSM309147': [0.0, 0.0, 0.0, -1.2803, -0.5364], 'GSM309148': [0.0, -3.3032, 1.5988, -1.1619, -0.4155], 'GSM309149': [0.0, 0.0, -3.7561999999999998, -2.354, -1.8862], 'GSM309150': [-2.0645, -5.4597, -1.2686, -3.0706, 0.0], 'GSM309151': [0.274, 0.0, -3.7332, -0.4449, -0.0831], 'GSM309152': [0.0, 0.0, -1.8303, -2.0458, 0.0], 'GSM309153': [0.0, 0.0, -3.3146, -3.7171, -2.2778], 'GSM309154': [0.0, 0.0, 0.0, -0.8025, -0.8618], 'GSM309155': [0.0, -2.155, -3.4703, -2.039, -0.96], 'GSM309156': [0.0, 0.0, 0.5435, 2.3734, 1.6223], 'GSM309157': [0.0, -0.5322, -0.8053999999999999, 0.4497, -0.7048], 'GSM309158': [0.0, -0.0007, 1.813, 1.2003, 1.9106], 'GSM309159': [0.0, -0.1732, -0.1768, 0.1513, 0.3777], 'GSM309160': [0.0, -0.5567, -1.0189, 0.5674, 0.4684], 'GSM309161': [0.0742, -2.559, -3.0284, -2.3005, -1.3133], 'GSM309162': [0.0, -1.1636, -1.3293, -2.0252, -0.4163], 'GSM309163': [0.7325, 0.1887, 0.19659999999999997, -0.053, 1.1867], 'GSM309164': [-1.295, -1.1098, -1.2967, -0.0183, 1.2539], 'GSM309165': [0.6059, -1.4014, -0.6243, -0.8428, -1.1621], 'GSM309166': [0.0, -0.1921, 1.275, 0.5519, 1.2219]}\n",
"Shape of gene expression data: (421, 95)\n"
]
}
],
"source": [
"# 1. Identify the columns for gene identifiers and gene symbols in the annotation data\n",
"# From the preview, we can see that:\n",
"# - 'ID' in gene_annotation corresponds to gene identifiers in gene_data\n",
"# - 'Gene Symbol' contains the corresponding gene symbols\n",
"\n",
"# 2. Get a gene mapping dataframe by extracting these two columns\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n",
"\n",
"# Print a preview of the mapping to verify\n",
"print(\"Gene mapping preview:\")\n",
"print(preview_df(gene_mapping))\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Print the first few rows of the resulting gene expression data\n",
"print(\"Gene expression data preview after mapping:\")\n",
"print(preview_df(gene_data))\n",
"\n",
"# Print the shape of the resulting gene expression dataframe\n",
"print(\"Shape of gene expression data:\", gene_data.shape)\n"
]
},
{
"cell_type": "markdown",
"id": "9a4e2e09",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a2c156a9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:15.412941Z",
"iopub.status.busy": "2025-03-25T05:15:15.412833Z",
"iopub.status.idle": "2025-03-25T05:15:15.612103Z",
"shell.execute_reply": "2025-03-25T05:15:15.611767Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after normalization: (400, 95)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Essential_Thrombocythemia/gene_data/GSE12295.csv\n",
"Loading the original clinical data...\n",
"Extracting clinical features...\n",
"Clinical data preview:\n",
"{'GSM309072': [1.0], 'GSM309073': [1.0], 'GSM309074': [1.0], 'GSM309075': [1.0], 'GSM309076': [1.0], 'GSM309077': [1.0], 'GSM309078': [1.0], 'GSM309079': [1.0], 'GSM309080': [1.0], 'GSM309081': [1.0], 'GSM309082': [1.0], 'GSM309083': [1.0], 'GSM309084': [1.0], 'GSM309085': [1.0], 'GSM309086': [1.0], 'GSM309087': [1.0], 'GSM309088': [1.0], 'GSM309089': [0.0], 'GSM309090': [1.0], 'GSM309091': [0.0], 'GSM309092': [1.0], 'GSM309093': [1.0], 'GSM309094': [1.0], 'GSM309095': [0.0], 'GSM309096': [0.0], 'GSM309097': [0.0], 'GSM309098': [0.0], 'GSM309099': [0.0], 'GSM309100': [0.0], 'GSM309101': [0.0], 'GSM309102': [0.0], 'GSM309103': [0.0], 'GSM309104': [0.0], 'GSM309105': [0.0], 'GSM309106': [0.0], 'GSM309107': [0.0], 'GSM309108': [0.0], 'GSM309109': [0.0], 'GSM309110': [0.0], 'GSM309111': [0.0], 'GSM309112': [0.0], 'GSM309113': [0.0], 'GSM309114': [0.0], 'GSM309115': [0.0], 'GSM309116': [0.0], 'GSM309117': [0.0], 'GSM309118': [0.0], 'GSM309119': [0.0], 'GSM309120': [0.0], 'GSM309121': [0.0], 'GSM309122': [0.0], 'GSM309123': [0.0], 'GSM309124': [0.0], 'GSM309125': [0.0], 'GSM309126': [0.0], 'GSM309127': [0.0], 'GSM309128': [0.0], 'GSM309129': [0.0], 'GSM309130': [0.0], 'GSM309131': [0.0], 'GSM309132': [0.0], 'GSM309133': [0.0], 'GSM309134': [0.0], 'GSM309135': [0.0], 'GSM309136': [0.0], 'GSM309137': [0.0], 'GSM309138': [0.0], 'GSM309139': [0.0], 'GSM309140': [0.0], 'GSM309141': [0.0], 'GSM309142': [0.0], 'GSM309143': [0.0], 'GSM309144': [0.0], 'GSM309145': [0.0], 'GSM309146': [0.0], 'GSM309147': [0.0], 'GSM309148': [0.0], 'GSM309149': [1.0], 'GSM309150': [1.0], 'GSM309151': [0.0], 'GSM309152': [0.0], 'GSM309153': [0.0], 'GSM309154': [0.0], 'GSM309155': [0.0], 'GSM309156': [0.0], 'GSM309157': [0.0], 'GSM309158': [0.0], 'GSM309159': [0.0], 'GSM309160': [0.0], 'GSM309161': [0.0], 'GSM309162': [0.0], 'GSM309163': [0.0], 'GSM309164': [0.0], 'GSM309165': [0.0], 'GSM309166': [1.0]}\n",
"Clinical data saved to ../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE12295.csv\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (95, 401)\n",
"Handling missing values...\n",
"Linked data shape after handling missing values: (95, 401)\n",
"Checking for bias in trait distribution...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"For the feature 'Essential_Thrombocythemia', the least common label is '1.0' with 24 occurrences. This represents 25.26% of the dataset.\n",
"The distribution of the feature 'Essential_Thrombocythemia' in this dataset is fine.\n",
"\n",
"Dataset usability: True\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Essential_Thrombocythemia/GSE12295.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"print(\"Loading the original clinical data...\")\n",
"# Get the matrix file again to ensure we have the proper data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"print(\"Extracting clinical features...\")\n",
"# Use the clinical_data obtained directly from the matrix file\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# Save the clinical data to a CSV file\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Link clinical and genetic data using the normalized gene data\n",
"print(\"Linking clinical and genetic data...\")\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"print(\"Handling missing values...\")\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Check if trait is biased\n",
"print(\"Checking for bias in trait distribution...\")\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Final validation\n",
"note = \"Dataset contains gene expression data from patients with Essential Thrombocythemia (ET), Polycythemia Vera (PV), and Primary Myelofibrosis (PMF).\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|