File size: 35,574 Bytes
92d2f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "107b8644",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:05:40.011432Z",
"iopub.status.busy": "2025-03-25T07:05:40.011200Z",
"iopub.status.idle": "2025-03-25T07:05:40.180428Z",
"shell.execute_reply": "2025-03-25T07:05:40.180079Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Cardiovascular_Disease\"\n",
"cohort = \"GSE182600\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Cardiovascular_Disease\"\n",
"in_cohort_dir = \"../../input/GEO/Cardiovascular_Disease/GSE182600\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Cardiovascular_Disease/GSE182600.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Cardiovascular_Disease/gene_data/GSE182600.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Cardiovascular_Disease/clinical_data/GSE182600.csv\"\n",
"json_path = \"../../output/preprocess/Cardiovascular_Disease/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "a55e6232",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "950689ab",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:05:40.181866Z",
"iopub.status.busy": "2025-03-25T07:05:40.181720Z",
"iopub.status.idle": "2025-03-25T07:05:40.366619Z",
"shell.execute_reply": "2025-03-25T07:05:40.366264Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Gene Expression of Cardiogenic Shock Patients under Extracorporeal Membrane Oxygenation\"\n",
"!Series_summary\t\"Prognosis for cardiogenic shock patients under ECMO was our study goal. Success defined as survived more than 7 days after ECMO installation and failure died or had multiple organ failure in 7 days. Total 34 cases were enrolled, 17 success and 17 failure.\"\n",
"!Series_summary\t\"Peripheral blood mononuclear cells collected at ECMO installation 0hr, 2hr and removal were used analyzed.\"\n",
"!Series_overall_design\t\"Analysis of the cardiogenic shock patients at extracorporeal membrane oxygenation treatment by genome-wide gene expression. Transcriptomic profiling between successful and failure groups were analyzed.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['disease state: Acute myocarditis', 'disease state: Acute myocardial infarction', 'disease state: Dilated cardiomyopathy, DCMP', 'disease state: Congestive heart failure', 'disease state: Dilated cardiomyopathy', 'disease state: Arrhythmia', 'disease state: Aortic dissection'], 1: ['age: 33.4', 'age: 51.2', 'age: 51.9', 'age: 47.8', 'age: 41.5', 'age: 67.3', 'age: 52.8', 'age: 16.1', 'age: 78.9', 'age: 53.2', 'age: 70.9', 'age: 59.9', 'age: 21.9', 'age: 45.2', 'age: 52.4', 'age: 32.3', 'age: 55.8', 'age: 47', 'age: 57.3', 'age: 31.7', 'age: 49.3', 'age: 66.1', 'age: 55.9', 'age: 49.1', 'age: 63', 'age: 21', 'age: 53.6', 'age: 50.1', 'age: 37.4', 'age: 71.5'], 2: ['gender: F', 'gender: M'], 3: ['outcome: Success', 'outcome: Failure', 'outcome: failure'], 4: ['cell type: PBMC'], 5: ['time: 0hr', 'time: 2hr', 'time: Removal']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "73100bcd",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8c027350",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:05:40.367843Z",
"iopub.status.busy": "2025-03-25T07:05:40.367734Z",
"iopub.status.idle": "2025-03-25T07:05:40.377936Z",
"shell.execute_reply": "2025-03-25T07:05:40.377634Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of extracted clinical features:\n",
"{'Cardiovascular_Disease': [0.0, 1.0, 1.0, nan, nan], 'Age': [33.4, 51.2, 51.9, 47.8, 41.5], 'Gender': [0.0, 1.0, nan, nan, nan]}\n",
"Clinical data saved to: ../../output/preprocess/Cardiovascular_Disease/clinical_data/GSE182600.csv\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import json\n",
"from typing import Callable, Optional, Dict, Any\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background info, this dataset likely contains gene expression data from PBMCs\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# Trait: Cardiovascular disease outcome, available at key 3\n",
"trait_row = 3\n",
"\n",
"# Age: Available at key 1\n",
"age_row = 1\n",
"\n",
"# Gender: Available at key 2\n",
"gender_row = 2\n",
"\n",
"# 2.2 Data Type Conversion\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait values to binary (0 for success, 1 for failure)\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract value after colon if it exists\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to binary\n",
" if value.lower() == 'success':\n",
" return 0\n",
" elif value.lower() in ['failure', 'fail']:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age values to continuous numeric values\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract value after colon if it exists\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" try:\n",
" return float(value)\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender values to binary (0 for female, 1 for male)\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract value after colon if it exists\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to binary\n",
" if value.upper() == 'F':\n",
" return 0\n",
" elif value.upper() == 'M':\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Initial filtering and save metadata\n",
"validate_and_save_cohort_info(\n",
" is_final=False, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Create a DataFrame from the sample characteristics dictionary\n",
" # First, we need to create a function to get feature data since we're not using the normal workflow\n",
" def get_feature_data(clinical_dict, row_idx, feature_name, convert_func):\n",
" if row_idx is None or row_idx not in clinical_dict:\n",
" return pd.DataFrame()\n",
" \n",
" raw_values = clinical_dict[row_idx]\n",
" processed_values = [convert_func(val) for val in raw_values]\n",
" \n",
" # Create a dataframe with sample IDs as columns and feature as rows\n",
" feature_df = pd.DataFrame([processed_values], columns=[f\"Sample_{i+1}\" for i in range(len(processed_values))])\n",
" feature_df.index = [feature_name]\n",
" \n",
" return feature_df\n",
" \n",
" # Sample characteristics dictionary from the previous step output\n",
" sample_chars_dict = {\n",
" 0: ['disease state: Acute myocarditis', 'disease state: Acute myocardial infarction', 'disease state: Dilated cardiomyopathy, DCMP', 'disease state: Congestive heart failure', 'disease state: Dilated cardiomyopathy', 'disease state: Arrhythmia', 'disease state: Aortic dissection'],\n",
" 1: ['age: 33.4', 'age: 51.2', 'age: 51.9', 'age: 47.8', 'age: 41.5', 'age: 67.3', 'age: 52.8', 'age: 16.1', 'age: 78.9', 'age: 53.2', 'age: 70.9', 'age: 59.9', 'age: 21.9', 'age: 45.2', 'age: 52.4', 'age: 32.3', 'age: 55.8', 'age: 47', 'age: 57.3', 'age: 31.7', 'age: 49.3', 'age: 66.1', 'age: 55.9', 'age: 49.1', 'age: 63', 'age: 21', 'age: 53.6', 'age: 50.1', 'age: 37.4', 'age: 71.5'],\n",
" 2: ['gender: F', 'gender: M'],\n",
" 3: ['outcome: Success', 'outcome: Failure', 'outcome: failure'],\n",
" 4: ['cell type: PBMC'],\n",
" 5: ['time: 0hr', 'time: 2hr', 'time: Removal']\n",
" }\n",
" \n",
" # Create feature DataFrames\n",
" feature_list = []\n",
" trait_data = get_feature_data(sample_chars_dict, trait_row, trait, convert_trait)\n",
" feature_list.append(trait_data)\n",
" \n",
" if age_row is not None:\n",
" age_data = get_feature_data(sample_chars_dict, age_row, 'Age', convert_age)\n",
" feature_list.append(age_data)\n",
" \n",
" if gender_row is not None:\n",
" gender_data = get_feature_data(sample_chars_dict, gender_row, 'Gender', convert_gender)\n",
" feature_list.append(gender_data)\n",
" \n",
" # Combine all features\n",
" selected_clinical_df = pd.concat(feature_list, axis=0)\n",
" \n",
" # Transpose the DataFrame to have samples as rows and features as columns\n",
" selected_clinical_df = selected_clinical_df.transpose()\n",
" \n",
" # Preview the result\n",
" print(\"Preview of extracted clinical features:\")\n",
" preview = preview_df(selected_clinical_df)\n",
" print(preview)\n",
" \n",
" # Save clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=True)\n",
" print(f\"Clinical data saved to: {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "5af853f3",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4211b7a4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:05:40.379081Z",
"iopub.status.busy": "2025-03-25T07:05:40.378966Z",
"iopub.status.idle": "2025-03-25T07:05:40.716395Z",
"shell.execute_reply": "2025-03-25T07:05:40.716003Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Matrix file found: ../../input/GEO/Cardiovascular_Disease/GSE182600/GSE182600_series_matrix.txt.gz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape: (29363, 78)\n",
"First 20 gene/probe identifiers:\n",
"Index(['ILMN_1343291', 'ILMN_1651209', 'ILMN_1651228', 'ILMN_1651229',\n",
" 'ILMN_1651235', 'ILMN_1651236', 'ILMN_1651237', 'ILMN_1651238',\n",
" 'ILMN_1651254', 'ILMN_1651260', 'ILMN_1651262', 'ILMN_1651268',\n",
" 'ILMN_1651278', 'ILMN_1651282', 'ILMN_1651285', 'ILMN_1651286',\n",
" 'ILMN_1651292', 'ILMN_1651303', 'ILMN_1651309', 'ILMN_1651315'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "fa109453",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d4c866b4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:05:40.717746Z",
"iopub.status.busy": "2025-03-25T07:05:40.717624Z",
"iopub.status.idle": "2025-03-25T07:05:40.719630Z",
"shell.execute_reply": "2025-03-25T07:05:40.719339Z"
}
},
"outputs": [],
"source": [
"# Looking at the gene identifiers, I can see they are ILMN_* format\n",
"# These are Illumina probe IDs (BeadArray technology), not human gene symbols\n",
"# They will need to be mapped to standard gene symbols for analysis\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "62f41cf3",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1d132180",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:05:40.720805Z",
"iopub.status.busy": "2025-03-25T07:05:40.720700Z",
"iopub.status.idle": "2025-03-25T07:05:45.411148Z",
"shell.execute_reply": "2025-03-25T07:05:45.410749Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation preview:\n",
"Columns in gene annotation: ['ID', 'Transcript', 'Species', 'Source', 'Search_Key', 'ILMN_Gene', 'Source_Reference_ID', 'RefSeq_ID', 'Entrez_Gene_ID', 'GI', 'Accession', 'Symbol', 'Protein_Product', 'Array_Address_Id', 'Probe_Type', 'Probe_Start', 'SEQUENCE', 'Chromosome', 'Probe_Chr_Orientation', 'Probe_Coordinates', 'Cytoband', 'Definition', 'Ontology_Component', 'Ontology_Process', 'Ontology_Function', 'Synonyms', 'Obsolete_Probe_Id', 'GB_ACC']\n",
"{'ID': ['ILMN_3166687', 'ILMN_3165566', 'ILMN_3164811', 'ILMN_3165363', 'ILMN_3166511'], 'Transcript': ['ILMN_333737', 'ILMN_333646', 'ILMN_333584', 'ILMN_333628', 'ILMN_333719'], 'Species': ['ILMN Controls', 'ILMN Controls', 'ILMN Controls', 'ILMN Controls', 'ILMN Controls'], 'Source': ['ILMN_Controls', 'ILMN_Controls', 'ILMN_Controls', 'ILMN_Controls', 'ILMN_Controls'], 'Search_Key': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009', 'ERCC-00053', 'ERCC-00144'], 'ILMN_Gene': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009', 'ERCC-00053', 'ERCC-00144'], 'Source_Reference_ID': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009', 'ERCC-00053', 'ERCC-00144'], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': ['DQ516750', 'DQ883654', 'DQ668364', 'DQ516785', 'DQ854995'], 'Symbol': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009', 'ERCC-00053', 'ERCC-00144'], 'Protein_Product': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5270161.0, 4260594.0, 7610424.0, 5260356.0, 2030196.0], 'Probe_Type': ['S', 'S', 'S', 'S', 'S'], 'Probe_Start': [12.0, 224.0, 868.0, 873.0, 130.0], 'SEQUENCE': ['CCCATGTGTCCAATTCTGAATATCTTTCCAGCTAAGTGCTTCTGCCCACC', 'GGATTAACTGCTGTGGTGTGTCATACTCGGCTACCTCCTGGTTTGGCGTC', 'GACCACGCCTTGTAATCGTATGACACGCGCTTGACACGACTGAATCCAGC', 'CTGCAATGCCATTAACAACCTTAGCACGGTATTTCCAGTAGCTGGTGAGC', 'CGTGCAGACAGGGATCGTAAGGCGATCCAGCCGGTATACCTTAGTCACAT'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': ['Methanocaldococcus jannaschii spike-in control MJ-500-33 genomic sequence', 'Synthetic construct clone NISTag13 external RNA control sequence', 'Synthetic construct clone TagJ microarray control', 'Methanocaldococcus jannaschii spike-in control MJ-1000-68 genomic sequence', 'Synthetic construct clone AG006.1100 external RNA control sequence'], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': ['DQ516750', 'DQ883654', 'DQ668364', 'DQ516785', 'DQ854995']}\n",
"\n",
"Searching for platform information in SOFT file:\n",
"Platform ID not found in first 100 lines\n",
"\n",
"Searching for gene symbol information in SOFT file:\n",
"Found references to gene symbols:\n",
"#ILMN_Gene = Internal gene symbol\n",
"#Symbol = Gene symbol from the source database\n",
"#Synonyms = Gene symbol synonyms from Refseq\n",
"ID\tTranscript\tSpecies\tSource\tSearch_Key\tILMN_Gene\tSource_Reference_ID\tRefSeq_ID\tEntrez_Gene_ID\tGI\tAccession\tSymbol\tProtein_Product\tArray_Address_Id\tProbe_Type\tProbe_Start\tSEQUENCE\tChromosome\tProbe_Chr_Orientation\tProbe_Coordinates\tCytoband\tDefinition\tOntology_Component\tOntology_Process\tOntology_Function\tSynonyms\tObsolete_Probe_Id\tGB_ACC\n",
"ILMN_1713086\tILMN_139166\tHomo sapiens\tRefSeq\tNM_000990.2\tRPL27A\tNM_000990.2\tNM_000990.2\t6157\t14141189\tNM_000990.2\tRPL27A\tNP_000981.1\t4920193\tS\t27\tCATCCAGACTGAGGAAGACCCGGAAACTTAGGGGCCACGTGAGCCACGGC\t11\t+\t8661326-8661375\t11p15.4b\tHomo sapiens ribosomal protein L27a (RPL27A), mRNA.\tThe living contents of a cell; the matter contained within (but not including) the plasma membrane, usually taken to exclude large vacuoles and masses of secretory or ingested material. In eukaryotes it includes the nucleus and cytoplasm [goid 5622] [evidence IEA]; That part of the cytoplasm that does not contain membranous or particulate subcellular components [goid 5829] [pmid 14567916] [evidence EXP]; An intracellular organelle, about 200 A in diameter, consisting of RNA and protein. It is the site of protein biosynthesis resulting from translation of messenger RNA (mRNA). It consists of two subunits, one large and one small, each containing only protein and RNA. Both the ribosome and its subunits are characterized by their sedimentation coefficients, expressed in Svedberg units (symbol: S). Hence, the prokaryotic ribosome (70S) comprises a large (50S) subunit and a small (30S) subunit, while the eukaryotic ribosome (80S) comprises a large (60S) subunit and a small (40S) subunit. Two sites on the ribosomal large subunit are involved in translation, namely the aminoacyl site (A site) and peptidyl site (P site). Ribosomes from prokaryotes, eukaryotes, mitochondria, and chloroplasts have characteristically distinct ribosomal proteins [goid 5840] [evidence IEA]; The large subunit of the ribosome that is found in the cytosol of the cell. The cytosol is that part of the cytoplasm that does not contain membranous or particulate subcellular components [goid 22625] [pmid 7772601] [evidence TAS]\tThe successive addition of amino acid residues to a nascent polypeptide chain during protein biosynthesis [goid 6414] [pmid 15189156] [evidence EXP]\tInteracting selectively with an RNA molecule or a portion thereof [goid 3723] [pmid 7772601] [evidence TAS]; The action of a molecule that contributes to the structural integrity of the ribosome [goid 3735] [pmid 7772601] [evidence TAS]\tMGC87238\tMGC87238\tNM_000990.2\n",
"\n",
"Checking for additional annotation files in the directory:\n",
"[]\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
"print(\"\\nGene annotation preview:\")\n",
"print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
"print(preview_df(gene_annotation, n=5))\n",
"\n",
"# Let's look for platform information in the SOFT file to understand the annotation better\n",
"print(\"\\nSearching for platform information in SOFT file:\")\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" for i, line in enumerate(f):\n",
" if '!Series_platform_id' in line:\n",
" print(line.strip())\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Platform ID not found in first 100 lines\")\n",
" break\n",
"\n",
"# Check if the SOFT file includes any reference to gene symbols\n",
"print(\"\\nSearching for gene symbol information in SOFT file:\")\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" gene_symbol_lines = []\n",
" for i, line in enumerate(f):\n",
" if 'GENE_SYMBOL' in line or 'gene_symbol' in line.lower() or 'symbol' in line.lower():\n",
" gene_symbol_lines.append(line.strip())\n",
" if i > 1000 and len(gene_symbol_lines) > 0: # Limit search but ensure we found something\n",
" break\n",
" \n",
" if gene_symbol_lines:\n",
" print(\"Found references to gene symbols:\")\n",
" for line in gene_symbol_lines[:5]: # Show just first 5 matches\n",
" print(line)\n",
" else:\n",
" print(\"No explicit gene symbol references found in first 1000 lines\")\n",
"\n",
"# Look for alternative annotation files or references in the directory\n",
"print(\"\\nChecking for additional annotation files in the directory:\")\n",
"all_files = os.listdir(in_cohort_dir)\n",
"print([f for f in all_files if 'annotation' in f.lower() or 'platform' in f.lower() or 'gpl' in f.lower()])\n"
]
},
{
"cell_type": "markdown",
"id": "7197d9ce",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0b04f770",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:05:45.412543Z",
"iopub.status.busy": "2025-03-25T07:05:45.412416Z",
"iopub.status.idle": "2025-03-25T07:05:46.841560Z",
"shell.execute_reply": "2025-03-25T07:05:46.841162Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Identifying mapping columns:\n",
"Probe ID column: 'ID'\n",
"Gene Symbol column: 'Symbol'\n",
"\n",
"Preview of gene mapping data:\n",
"{'ID': ['ILMN_3166687', 'ILMN_3165566', 'ILMN_3164811', 'ILMN_3165363', 'ILMN_3166511'], 'Gene': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009', 'ERCC-00053', 'ERCC-00144']}\n",
"Gene mapping shape: (29377, 2)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Preview of resulting gene expression data:\n",
"Gene data shape after mapping: (20206, 78)\n",
"First 10 gene symbols: ['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene expression data saved to: ../../output/preprocess/Cardiovascular_Disease/gene_data/GSE182600.csv\n"
]
}
],
"source": [
"# 1. Identify which columns to use for gene mapping\n",
"# From the preview, we can see that 'ID' contains the ILMN_* identifiers matching gene_data's index\n",
"# 'Symbol' contains the gene symbols we want to map to\n",
"print(\"\\nIdentifying mapping columns:\")\n",
"print(f\"Probe ID column: 'ID'\")\n",
"print(f\"Gene Symbol column: 'Symbol'\")\n",
"\n",
"# 2. Create a gene mapping dataframe using the get_gene_mapping function\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
"\n",
"# Preview the mapping data\n",
"print(\"\\nPreview of gene mapping data:\")\n",
"print(preview_df(gene_mapping))\n",
"print(f\"Gene mapping shape: {gene_mapping.shape}\")\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Preview the results\n",
"print(\"\\nPreview of resulting gene expression data:\")\n",
"print(f\"Gene data shape after mapping: {gene_data.shape}\")\n",
"print(f\"First 10 gene symbols: {gene_data.index[:10].tolist()}\")\n",
"\n",
"# Save the gene expression data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"\\nGene expression data saved to: {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "aa603511",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4004cfe4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:05:46.842991Z",
"iopub.status.busy": "2025-03-25T07:05:46.842876Z",
"iopub.status.idle": "2025-03-25T07:05:59.283816Z",
"shell.execute_reply": "2025-03-25T07:05:59.283359Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after normalization: (19445, 78)\n",
"First 10 normalized gene symbols: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAA1', 'AAAS']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to: ../../output/preprocess/Cardiovascular_Disease/gene_data/GSE182600.csv\n",
"Clinical features saved to: ../../output/preprocess/Cardiovascular_Disease/clinical_data/GSE182600.csv\n",
"Clinical features preview (transposed):\n",
"{'Cardiovascular_Disease': [0.0, 0.0, 1.0, 0.0, 1.0], 'Age': [33.4, 51.2, 51.9, 47.8, 41.5], 'Gender': [0.0, 1.0, 0.0, 1.0, 0.0]}\n",
"Linked data shape: (78, 19448)\n",
"Linked data preview (first 5 rows, 5 columns):\n",
" Cardiovascular_Disease Age Gender A1BG A1BG-AS1\n",
"GSM5532093 0.0 33.4 0.0 123.145500 1284.286536\n",
"GSM5532094 0.0 51.2 1.0 134.323626 2123.843378\n",
"GSM5532095 1.0 51.9 0.0 100.294706 1088.857429\n",
"GSM5532096 0.0 47.8 1.0 130.315854 1074.517347\n",
"GSM5532097 1.0 41.5 0.0 106.890941 1070.809003\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (78, 19448)\n",
"For the feature 'Cardiovascular_Disease', the least common label is '1.0' with 31 occurrences. This represents 39.74% of the dataset.\n",
"The distribution of the feature 'Cardiovascular_Disease' in this dataset is fine.\n",
"\n",
"Quartiles for 'Age':\n",
" 25%: 47.0\n",
" 50% (Median): 52.15\n",
" 75%: 56.35\n",
"Min: 16.1\n",
"Max: 78.9\n",
"The distribution of the feature 'Age' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '0.0' with 24 occurrences. This represents 30.77% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n",
"A new JSON file was created at: ../../output/preprocess/Cardiovascular_Disease/cohort_info.json\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Cardiovascular_Disease/GSE182600.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {gene_data_normalized.shape}\")\n",
"print(f\"First 10 normalized gene symbols: {gene_data_normalized.index[:10].tolist()}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data_normalized.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to: {out_gene_data_file}\")\n",
"\n",
"# 2. Re-extract the clinical data directly from the source\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"# Define conversion functions based on previous analysis\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait values to binary (0 for success, 1 for failure)\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if it exists\n",
" if isinstance(value, str) and ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to binary\n",
" if value.lower() == 'success':\n",
" return 0\n",
" elif value.lower() in ['failure', 'fail']:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age values to continuous numeric values\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if it exists\n",
" if isinstance(value, str) and ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" try:\n",
" return float(value)\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender values to binary (0 for female, 1 for male)\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if it exists\n",
" if isinstance(value, str) and ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to binary\n",
" if value.upper() == 'F':\n",
" return 0\n",
" elif value.upper() == 'M':\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# Use the correct row indices from previous analysis\n",
"trait_row = 3 # outcome\n",
"age_row = 1 # age\n",
"gender_row = 2 # gender\n",
"\n",
"# Extract clinical features\n",
"clinical_features = geo_select_clinical_features(\n",
" clinical_data,\n",
" trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"# Save clinical features - make sure to transpose it so samples are rows, not columns\n",
"clinical_features_t = clinical_features.T # Transpose for proper format\n",
"clinical_features_t.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical features saved to: {out_clinical_data_file}\")\n",
"print(\"Clinical features preview (transposed):\")\n",
"print(preview_df(clinical_features_t))\n",
"\n",
"# 3. Link clinical and genetic data - use the transposed clinical data\n",
"linked_data = pd.merge(\n",
" clinical_features_t, \n",
" gene_data_normalized.T, # Transpose gene data so genes are columns\n",
" left_index=True, \n",
" right_index=True,\n",
" how='inner'\n",
")\n",
"\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
"preview_cols = min(5, linked_data.shape[1])\n",
"print(linked_data.iloc[:5, :preview_cols])\n",
"\n",
"# 4. Handle missing values\n",
"linked_data_clean = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data_clean.shape}\")\n",
"\n",
"# 5. Check for bias in the dataset\n",
"is_biased, linked_data_clean = judge_and_remove_biased_features(linked_data_clean, trait)\n",
"\n",
"# 6. Conduct final quality validation\n",
"note = \"Dataset contains gene expression data from PBMCs of cardiogenic shock patients under ECMO treatment, comparing successful and failed outcomes.\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data_clean,\n",
" note=note\n",
")\n",
"\n",
"# 7. Save the linked data if it's usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data_clean.to_csv(out_data_file, index=True)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset deemed not usable for associative studies. Linked data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|