File size: 49,947 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "47ec711b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:42:33.493188Z",
     "iopub.status.busy": "2025-03-25T08:42:33.492934Z",
     "iopub.status.idle": "2025-03-25T08:42:33.659193Z",
     "shell.execute_reply": "2025-03-25T08:42:33.658855Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Endometrioid_Cancer\"\n",
    "cohort = \"GSE68600\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Endometrioid_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Endometrioid_Cancer/GSE68600\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Endometrioid_Cancer/GSE68600.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Endometrioid_Cancer/gene_data/GSE68600.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Endometrioid_Cancer/clinical_data/GSE68600.csv\"\n",
    "json_path = \"../../output/preprocess/Endometrioid_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "62f04b32",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "54549953",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:42:33.660498Z",
     "iopub.status.busy": "2025-03-25T08:42:33.660365Z",
     "iopub.status.idle": "2025-03-25T08:42:33.695291Z",
     "shell.execute_reply": "2025-03-25T08:42:33.695013Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"caArray_cho-00156: Gene Expression in Ovarian Cancer Reflects Both Morphology and Biological Behavior\"\n",
      "!Series_summary\t\"Biologically and clinically meaningful tumor classification schemes have long been sought. Some malignant epithelial neoplasms, such as those in the thyroid and endometrium, exhibit more than one pattern of differentiation, each associated with distinctive clinical features and treatments. In other tissues, all carcinomas, regardless of morphological type, are treated as though they represent a single disease. To better understand the biological and clinical features seen in the four major histological types of ovarian carcinoma (OvCa), we analyzed gene expression in 113 ovarian epithelial tumors using oligonucleotide microarrays. Global views of the variation in gene expression were obtained using PCA. These analyses show that mucinous and clear cell OvCas can be readily distinguished from serous OvCas based on their gene expression profiles, regardless of tumor stage and grade. In contrast, endometrioid adenocarcinomas show significant overlap with other histological types. Although high-stage/grade tumors are generally separable from low-stage/grade tumors, clear cell OvCa has a molecular signature that distinguishes it from other poor-prognosis OvCas. Indeed, 73 genes, expressed 2- to 29-fold higher in clear cell OvCas compared with each of the other OvCa types, were identified. Collectively, the data indicate that gene expression patterns in ovarian adenocarcinomas reflect both morphological features and biological behavior. Moreover, these studies provide a foundation for the development of new type-specific diagnostic strategies and treatments for ovarian cancer.\"\n",
      "!Series_overall_design\t\"cho-00156\"\n",
      "!Series_overall_design\t\"Assay Type: Gene Expression\"\n",
      "!Series_overall_design\t\"Provider: Affymetrix\"\n",
      "!Series_overall_design\t\"Array Designs: Hu6800\"\n",
      "!Series_overall_design\t\"Organism: Homo sapiens (ncbitax)\"\n",
      "!Series_overall_design\t\"Material Types: synthetic_RNA, organism_part, whole_organism, total_RNA\"\n",
      "!Series_overall_design\t\"Disease States: Ovary cancer\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['Sex: F'], 1: ['disease state: Ovary cancer'], 2: ['disease location: Ovary'], 3: ['organism part: Ovary'], 4: ['histology: clear cell', 'histology: endometrioid', 'histology: endometrioid/serous', 'histology: mucinous', 'histology: serous', 'histology: clear cell/serous', 'histology: serous/mucinous', 'histology: serous/endometrioid', 'histology: serous/clear cell'], 5: ['disease stage: 1', 'disease stage: 4', 'disease stage: 2', 'disease stage: U', 'disease stage: 3'], 6: ['tumor grading: 3', 'tumor grading: 2', 'tumor grading: 1']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ee1bdd42",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "3c5cc5dd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:42:33.696497Z",
     "iopub.status.busy": "2025-03-25T08:42:33.696393Z",
     "iopub.status.idle": "2025-03-25T08:42:33.706729Z",
     "shell.execute_reply": "2025-03-25T08:42:33.706453Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of processed clinical data:\n",
      "{'GSM1676602': [0.0], 'GSM1676603': [0.0], 'GSM1676604': [1.0], 'GSM1676605': [1.0], 'GSM1676606': [1.0], 'GSM1676607': [1.0], 'GSM1676608': [1.0], 'GSM1676609': [1.0], 'GSM1676610': [1.0], 'GSM1676611': [1.0], 'GSM1676612': [1.0], 'GSM1676613': [1.0], 'GSM1676614': [1.0], 'GSM1676615': [0.0], 'GSM1676616': [0.0], 'GSM1676617': [0.0], 'GSM1676618': [0.0], 'GSM1676619': [0.0], 'GSM1676620': [0.0], 'GSM1676621': [0.0], 'GSM1676622': [0.0], 'GSM1676623': [0.0], 'GSM1676624': [0.0], 'GSM1676625': [0.0], 'GSM1676626': [0.0], 'GSM1676627': [0.0], 'GSM1676628': [0.0], 'GSM1676629': [0.0], 'GSM1676630': [0.0], 'GSM1676631': [0.0], 'GSM1676632': [0.0], 'GSM1676633': [0.0], 'GSM1676634': [0.0], 'GSM1676635': [0.0], 'GSM1676636': [0.0], 'GSM1676637': [0.0], 'GSM1676638': [0.0], 'GSM1676639': [0.0], 'GSM1676640': [0.0], 'GSM1676641': [0.0], 'GSM1676642': [0.0], 'GSM1676643': [0.0], 'GSM1676644': [0.0], 'GSM1676645': [0.0], 'GSM1676646': [1.0], 'GSM1676647': [1.0], 'GSM1676648': [1.0], 'GSM1676649': [1.0], 'GSM1676650': [1.0], 'GSM1676651': [1.0], 'GSM1676652': [1.0], 'GSM1676653': [1.0], 'GSM1676654': [1.0], 'GSM1676655': [1.0], 'GSM1676656': [1.0], 'GSM1676657': [1.0], 'GSM1676658': [1.0], 'GSM1676659': [1.0], 'GSM1676660': [1.0], 'GSM1676661': [1.0], 'GSM1676662': [1.0], 'GSM1676663': [1.0], 'GSM1676664': [1.0], 'GSM1676665': [1.0], 'GSM1676666': [1.0], 'GSM1676667': [1.0], 'GSM1676668': [1.0], 'GSM1676669': [0.0], 'GSM1676670': [0.0], 'GSM1676671': [0.0], 'GSM1676672': [0.0], 'GSM1676673': [0.0], 'GSM1676674': [0.0], 'GSM1676675': [0.0], 'GSM1676676': [0.0], 'GSM1676677': [0.0], 'GSM1676678': [0.0], 'GSM1676679': [0.0], 'GSM1676680': [0.0], 'GSM1676681': [0.0], 'GSM1676682': [0.0], 'GSM1676683': [0.0], 'GSM1676684': [0.0], 'GSM1676685': [0.0], 'GSM1676686': [0.0], 'GSM1676687': [0.0], 'GSM1676688': [0.0], 'GSM1676689': [0.0], 'GSM1676690': [0.0], 'GSM1676691': [0.0], 'GSM1676692': [0.0], 'GSM1676693': [0.0], 'GSM1676694': [0.0], 'GSM1676695': [0.0], 'GSM1676696': [1.0], 'GSM1676697': [0.0], 'GSM1676698': [0.0], 'GSM1676699': [0.0], 'GSM1676700': [0.0], 'GSM1676701': [0.0], 'GSM1676702': [0.0], 'GSM1676703': [0.0], 'GSM1676704': [1.0], 'GSM1676705': [1.0], 'GSM1676706': [0.0], 'GSM1676707': [0.0], 'GSM1676708': [0.0], 'GSM1676709': [1.0], 'GSM1676710': [0.0], 'GSM1676711': [0.0], 'GSM1676712': [0.0], 'GSM1676713': [0.0], 'GSM1676714': [0.0]}\n",
      "Clinical data saved to ../../output/preprocess/Endometrioid_Cancer/clinical_data/GSE68600.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains gene expression data from oligonucleotide microarrays\n",
    "# Specifically, it mentions \"Gene Expression in Ovarian Cancer\" and \"gene expression profiles\"\n",
    "is_gene_available = True\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# For trait (Endometrioid Cancer), we can determine this from the histology information in row 4\n",
    "trait_row = 4  # corresponds to histology data\n",
    "\n",
    "# Age data is not available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# Gender data appears to be available in row 0, but it shows only \"Sex: F\" which means all samples are female\n",
    "# Since this is a constant feature (all samples are female), we consider it not available\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert histology value to binary indicator for Endometrioid Cancer.\"\"\"\n",
    "    if value is None or not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = value.strip().lower()\n",
    "    \n",
    "    # Check if endometrioid is in the histology\n",
    "    if 'endometrioid' in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return 0\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to numerical format.\"\"\"\n",
    "    # Function defined but not used as age data is not available\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender value to binary format (0 for female, 1 for male).\"\"\"\n",
    "    # Function defined but not used as gender data is constant (all female)\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = value.strip().lower()\n",
    "    \n",
    "    if value in ['f', 'female']:\n",
    "        return 0\n",
    "    elif value in ['m', 'male']:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Trait data is available since trait_row is not None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering based on gene and trait availability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features\n",
    "    clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the processed clinical data\n",
    "    print(\"Preview of processed clinical data:\")\n",
    "    print(preview_df(clinical_df))\n",
    "    \n",
    "    # Save the clinical data to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c7721062",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4be4f55c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:42:33.708131Z",
     "iopub.status.busy": "2025-03-25T08:42:33.708028Z",
     "iopub.status.idle": "2025-03-25T08:42:33.770647Z",
     "shell.execute_reply": "2025-03-25T08:42:33.770332Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found data marker at line 71\n",
      "Header line: \"ID_REF\"\t\"GSM1676602\"\t\"GSM1676603\"\t\"GSM1676604\"\t\"GSM1676605\"\t\"GSM1676606\"\t\"GSM1676607\"\t\"GSM1676608\"\t\"GSM1676609\"\t\"GSM1676610\"\t\"GSM1676611\"\t\"GSM1676612\"\t\"GSM1676613\"\t\"GSM1676614\"\t\"GSM1676615\"\t\"GSM1676616\"\t\"GSM1676617\"\t\"GSM1676618\"\t\"GSM1676619\"\t\"GSM1676620\"\t\"GSM1676621\"\t\"GSM1676622\"\t\"GSM1676623\"\t\"GSM1676624\"\t\"GSM1676625\"\t\"GSM1676626\"\t\"GSM1676627\"\t\"GSM1676628\"\t\"GSM1676629\"\t\"GSM1676630\"\t\"GSM1676631\"\t\"GSM1676632\"\t\"GSM1676633\"\t\"GSM1676634\"\t\"GSM1676635\"\t\"GSM1676636\"\t\"GSM1676637\"\t\"GSM1676638\"\t\"GSM1676639\"\t\"GSM1676640\"\t\"GSM1676641\"\t\"GSM1676642\"\t\"GSM1676643\"\t\"GSM1676644\"\t\"GSM1676645\"\t\"GSM1676646\"\t\"GSM1676647\"\t\"GSM1676648\"\t\"GSM1676649\"\t\"GSM1676650\"\t\"GSM1676651\"\t\"GSM1676652\"\t\"GSM1676653\"\t\"GSM1676654\"\t\"GSM1676655\"\t\"GSM1676656\"\t\"GSM1676657\"\t\"GSM1676658\"\t\"GSM1676659\"\t\"GSM1676660\"\t\"GSM1676661\"\t\"GSM1676662\"\t\"GSM1676663\"\t\"GSM1676664\"\t\"GSM1676665\"\t\"GSM1676666\"\t\"GSM1676667\"\t\"GSM1676668\"\t\"GSM1676669\"\t\"GSM1676670\"\t\"GSM1676671\"\t\"GSM1676672\"\t\"GSM1676673\"\t\"GSM1676674\"\t\"GSM1676675\"\t\"GSM1676676\"\t\"GSM1676677\"\t\"GSM1676678\"\t\"GSM1676679\"\t\"GSM1676680\"\t\"GSM1676681\"\t\"GSM1676682\"\t\"GSM1676683\"\t\"GSM1676684\"\t\"GSM1676685\"\t\"GSM1676686\"\t\"GSM1676687\"\t\"GSM1676688\"\t\"GSM1676689\"\t\"GSM1676690\"\t\"GSM1676691\"\t\"GSM1676692\"\t\"GSM1676693\"\t\"GSM1676694\"\t\"GSM1676695\"\t\"GSM1676696\"\t\"GSM1676697\"\t\"GSM1676698\"\t\"GSM1676699\"\t\"GSM1676700\"\t\"GSM1676701\"\t\"GSM1676702\"\t\"GSM1676703\"\t\"GSM1676704\"\t\"GSM1676705\"\t\"GSM1676706\"\t\"GSM1676707\"\t\"GSM1676708\"\t\"GSM1676709\"\t\"GSM1676710\"\t\"GSM1676711\"\t\"GSM1676712\"\t\"GSM1676713\"\t\"GSM1676714\"\n",
      "First data line: \"A28102_at\"\t268\t149\t130\t131\t292\t414\t125\t105\t118\t175\t174\t171\t247\t468\t202\t127\t131\t210\t250\t129\t198\t157\t138\t142\t86\t224\t114\t120\t184\t184\t263\t107\t116\t304\t183\t150\t155\t200\t160\t112\t112\t92\t367\t197\t408\t136\t223\t192\t165\t253\t96\t220\t152\t114\t334\t100\t78\t101\t125\t792\t120\t223\t156\t263\t174\t157\t233\t255\t224\t115\t229\t403\t102\t258\t198\t172\t145\t111\t88\t179\t471\t166\t153\t132\t142\t169\t100\t204\t131\t221\t157\t221\t92\t139\t252\t142\t132\t183\t195\t114\t129\t247\t604\t188\t140\t125\t87\t75\t110\t283\t366\t104\t122\n",
      "Index(['A28102_at', 'AB000114_at', 'AB000115_at', 'AB000220_at',\n",
      "       'AB000381_s_at', 'AB000409_at', 'AB000410_s_at', 'AB000449_at',\n",
      "       'AB000450_at', 'AB000460_at', 'AB000462_at', 'AB000464_at',\n",
      "       'AB000466_at', 'AB000467_at', 'AB000468_at', 'AB000584_at',\n",
      "       'AB000816_s_at', 'AB000895_at', 'AB000896_at', 'AB000897_at'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "66a348ee",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "4dba1f90",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:42:33.771715Z",
     "iopub.status.busy": "2025-03-25T08:42:33.771602Z",
     "iopub.status.idle": "2025-03-25T08:42:33.773495Z",
     "shell.execute_reply": "2025-03-25T08:42:33.773225Z"
    }
   },
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers in the gene expression data, we can see identifiers like \"A28102_at\", \"AB000114_at\", etc.\n",
    "# These appear to be probe IDs from an Affymetrix microarray platform, not standard human gene symbols.\n",
    "# Affymetrix probe IDs typically need to be mapped to human gene symbols for biological interpretation.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "54be65c2",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "762526a2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:42:33.774673Z",
     "iopub.status.busy": "2025-03-25T08:42:33.774569Z",
     "iopub.status.idle": "2025-03-25T08:42:33.963891Z",
     "shell.execute_reply": "2025-03-25T08:42:33.963531Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Examining SOFT file structure:\n",
      "Line 0: ^DATABASE = GeoMiame\n",
      "Line 1: !Database_name = Gene Expression Omnibus (GEO)\n",
      "Line 2: !Database_institute = NCBI NLM NIH\n",
      "Line 3: !Database_web_link = http://www.ncbi.nlm.nih.gov/geo\n",
      "Line 4: !Database_email = [email protected]\n",
      "Line 5: ^SERIES = GSE68600\n",
      "Line 6: !Series_title = caArray_cho-00156: Gene Expression in Ovarian Cancer Reflects Both Morphology and Biological Behavior\n",
      "Line 7: !Series_geo_accession = GSE68600\n",
      "Line 8: !Series_status = Public on May 07 2015\n",
      "Line 9: !Series_submission_date = May 06 2015\n",
      "Line 10: !Series_last_update_date = Jul 08 2016\n",
      "Line 11: !Series_pubmed_id = 12183431\n",
      "Line 12: !Series_summary = Biologically and clinically meaningful tumor classification schemes have long been sought. Some malignant epithelial neoplasms, such as those in the thyroid and endometrium, exhibit more than one pattern of differentiation, each associated with distinctive clinical features and treatments. In other tissues, all carcinomas, regardless of morphological type, are treated as though they represent a single disease. To better understand the biological and clinical features seen in the four major histological types of ovarian carcinoma (OvCa), we analyzed gene expression in 113 ovarian epithelial tumors using oligonucleotide microarrays. Global views of the variation in gene expression were obtained using PCA. These analyses show that mucinous and clear cell OvCas can be readily distinguished from serous OvCas based on their gene expression profiles, regardless of tumor stage and grade. In contrast, endometrioid adenocarcinomas show significant overlap with other histological types. Although high-stage/grade tumors are generally separable from low-stage/grade tumors, clear cell OvCa has a molecular signature that distinguishes it from other poor-prognosis OvCas. Indeed, 73 genes, expressed 2- to 29-fold higher in clear cell OvCas compared with each of the other OvCa types, were identified. Collectively, the data indicate that gene expression patterns in ovarian adenocarcinomas reflect both morphological features and biological behavior. Moreover, these studies provide a foundation for the development of new type-specific diagnostic strategies and treatments for ovarian cancer.\n",
      "Line 13: !Series_overall_design = cho-00156\n",
      "Line 14: !Series_overall_design = Assay Type: Gene Expression\n",
      "Line 15: !Series_overall_design = Provider: Affymetrix\n",
      "Line 16: !Series_overall_design = Array Designs: Hu6800\n",
      "Line 17: !Series_overall_design = Organism: Homo sapiens (ncbitax)\n",
      "Line 18: !Series_overall_design = Material Types: synthetic_RNA, organism_part, whole_organism, total_RNA\n",
      "Line 19: !Series_overall_design = Disease States: Ovary cancer\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "{'ID': ['A28102_at', 'AB000114_at', 'AB000115_at', 'AB000220_at', 'AB000381_s_at'], 'GB_ACC': ['A28102', 'AB000114', 'AB000115', 'AB000220', 'AB000381'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['GenBank', 'GenBank', 'GenBank', 'GenBank', 'GenBank'], 'Target Description': ['A28102, class A, 20 probes, 16 in A28102cds 986-1442: 4 in reverseSequence, 1546-1582, Human GABAa receptor alpha-3 subunit.', 'AB000114, class A, 20 probes, 20 in AB000114 1818-2208, Human mRNA for osteomodulin, complete cds', 'AB000115, class A, 20 probes, 20 in AB000115 1469-1973, Human mRNA, complete cds', 'AB000220, class A, 20 probes, 20 in AB000220 4588-5134, Human mRNA for semaphorin E, complete cds', 'AB000381, class A, 20 probes, 19 in AB000381exon#2-4 45-395: 1 not in GB record, Human DNA for GPI-anchored molecule-like protein, complete cds'], 'Representative Public ID': ['A28102', 'AB000114', 'AB000115', 'AB000220', 'AB000381'], 'Gene Title': ['gamma-aminobutyric acid (GABA) A receptor, alpha 3', 'osteomodulin', 'interferon-induced protein 44-like', 'sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3C', 'glycosylphosphatidylinositol anchored molecule like'], 'Gene Symbol': ['GABRA3', 'OMD', 'IFI44L', 'SEMA3C', 'GML'], 'ENTREZ_GENE_ID': ['2556', '4958', '10964', '10512', '2765'], 'RefSeq Transcript ID': ['NM_000808 /// XM_005274659 /// XM_006724811', 'NM_005014', 'NM_006820 /// XM_005270391 /// XM_005270392 /// XM_005270393 /// XM_006710303 /// XM_006710304', 'NM_006379 /// XM_005250113', 'NM_002066'], 'Gene Ontology Biological Process': ['0006810 // transport // traceable author statement /// 0006811 // ion transport // inferred from electronic annotation /// 0006821 // chloride transport // inferred from electronic annotation /// 0007214 // gamma-aminobutyric acid signaling pathway // inferred from electronic annotation /// 0007268 // synaptic transmission // traceable author statement /// 0034220 // ion transmembrane transport // traceable author statement /// 0055085 // transmembrane transport // traceable author statement /// 1902476 // chloride transmembrane transport // inferred from electronic annotation', '0005975 // carbohydrate metabolic process // traceable author statement /// 0007155 // cell adhesion // inferred from electronic annotation /// 0018146 // keratan sulfate biosynthetic process // traceable author statement /// 0030203 // glycosaminoglycan metabolic process // traceable author statement /// 0042339 // keratan sulfate metabolic process // traceable author statement /// 0042340 // keratan sulfate catabolic process // traceable author statement /// 0044281 // small molecule metabolic process // traceable author statement', '0006955 // immune response // inferred from electronic annotation /// 0051607 // defense response to virus // inferred from electronic annotation', '0001755 // neural crest cell migration // inferred from electronic annotation /// 0001756 // somitogenesis // inferred from electronic annotation /// 0001974 // blood vessel remodeling // inferred from electronic annotation /// 0003151 // outflow tract morphogenesis // inferred from electronic annotation /// 0003215 // cardiac right ventricle morphogenesis // inferred from electronic annotation /// 0003350 // pulmonary myocardium development // inferred from electronic annotation /// 0006955 // immune response // traceable author statement /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007399 // nervous system development // inferred from electronic annotation /// 0007411 // axon guidance // inferred from sequence or structural similarity /// 0007507 // heart development // inferred from electronic annotation /// 0009791 // post-embryonic development // inferred from electronic annotation /// 0021915 // neural tube development // inferred from electronic annotation /// 0030154 // cell differentiation // inferred from electronic annotation /// 0042493 // response to drug // traceable author statement /// 0060174 // limb bud formation // inferred from electronic annotation /// 0060666 // dichotomous subdivision of terminal units involved in salivary gland branching // inferred from electronic annotation', '0006915 // apoptotic process // traceable author statement /// 0006977 // DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest // traceable author statement /// 0008285 // negative regulation of cell proliferation // traceable author statement'], 'Gene Ontology Cellular Component': ['0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0030054 // cell junction // inferred from electronic annotation /// 0034707 // chloride channel complex // inferred from electronic annotation /// 0045202 // synapse // inferred from electronic annotation /// 0045211 // postsynaptic membrane // inferred from electronic annotation', '0005576 // extracellular region // traceable author statement /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005796 // Golgi lumen // traceable author statement /// 0043202 // lysosomal lumen // traceable author statement', '0005737 // cytoplasm // inferred from electronic annotation', '0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from electronic annotation /// 0016020 // membrane // inferred from electronic annotation', '0005886 // plasma membrane // inferred from electronic annotation /// 0016020 // membrane // inferred from electronic annotation /// 0019898 // extrinsic component of membrane // traceable author statement /// 0031225 // anchored component of membrane // inferred from electronic annotation'], 'Gene Ontology Molecular Function': ['0004890 // GABA-A receptor activity // inferred from electronic annotation /// 0005216 // ion channel activity // inferred from electronic annotation /// 0005230 // extracellular ligand-gated ion channel activity // inferred from electronic annotation /// 0005254 // chloride channel activity // inferred from electronic annotation /// 0008503 // benzodiazepine receptor activity // traceable author statement', '0005515 // protein binding // inferred from electronic annotation', nan, '0004872 // receptor activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from electronic annotation /// 0030215 // semaphorin receptor binding // inferred from electronic annotation', nan]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
    "import gzip\n",
    "\n",
    "# Look at the first few lines of the SOFT file to understand its structure\n",
    "print(\"Examining SOFT file structure:\")\n",
    "try:\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        # Read first 20 lines to understand the file structure\n",
    "        for i, line in enumerate(file):\n",
    "            if i < 20:\n",
    "                print(f\"Line {i}: {line.strip()}\")\n",
    "            else:\n",
    "                break\n",
    "except Exception as e:\n",
    "    print(f\"Error reading SOFT file: {e}\")\n",
    "\n",
    "# 2. Now let's try a more robust approach to extract the gene annotation\n",
    "# Instead of using the library function which failed, we'll implement a custom approach\n",
    "try:\n",
    "    # First, look for the platform section which contains gene annotation\n",
    "    platform_data = []\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        in_platform_section = False\n",
    "        for line in file:\n",
    "            if line.startswith('^PLATFORM'):\n",
    "                in_platform_section = True\n",
    "                continue\n",
    "            if in_platform_section and line.startswith('!platform_table_begin'):\n",
    "                # Next line should be the header\n",
    "                header = next(file).strip()\n",
    "                platform_data.append(header)\n",
    "                # Read until the end of the platform table\n",
    "                for table_line in file:\n",
    "                    if table_line.startswith('!platform_table_end'):\n",
    "                        break\n",
    "                    platform_data.append(table_line.strip())\n",
    "                break\n",
    "    \n",
    "    # If we found platform data, convert it to a DataFrame\n",
    "    if platform_data:\n",
    "        import pandas as pd\n",
    "        import io\n",
    "        platform_text = '\\n'.join(platform_data)\n",
    "        gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
    "                                      low_memory=False, on_bad_lines='skip')\n",
    "        print(\"\\nGene annotation preview:\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"Could not find platform table in SOFT file\")\n",
    "        \n",
    "        # Try an alternative approach - extract mapping from other sections\n",
    "        with gzip.open(soft_file, 'rt') as file:\n",
    "            for line in file:\n",
    "                if 'ANNOTATION information' in line or 'annotation information' in line:\n",
    "                    print(f\"Found annotation information: {line.strip()}\")\n",
    "                if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
    "                    print(f\"Platform title: {line.strip()}\")\n",
    "            \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f813ec33",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "928a3648",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:42:33.965214Z",
     "iopub.status.busy": "2025-03-25T08:42:33.965104Z",
     "iopub.status.idle": "2025-03-25T08:42:34.403909Z",
     "shell.execute_reply": "2025-03-25T08:42:34.403543Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping preview (first 5 rows):\n",
      "              ID    Gene\n",
      "0      A28102_at  GABRA3\n",
      "1    AB000114_at     OMD\n",
      "2    AB000115_at  IFI44L\n",
      "3    AB000220_at  SEMA3C\n",
      "4  AB000381_s_at     GML\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data preview (first 5 genes, 5 samples):\n",
      "       GSM1676602  GSM1676603  GSM1676604  GSM1676605  GSM1676606\n",
      "Gene                                                             \n",
      "A2M        1811.0      3908.0      3826.0      4674.0      1638.0\n",
      "AADAC        34.0        81.0       225.0        16.0       155.0\n",
      "AAMP       2176.0      1885.0      3466.0      1332.0      2475.0\n",
      "AANAT       998.0       532.0       844.0       556.0      1340.0\n",
      "AARS       1995.0      3358.0      1931.0      2293.0      2812.0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Endometrioid_Cancer/gene_data/GSE68600.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify which columns in the gene annotation contain the gene identifier and gene symbol\n",
    "# Based on the preview, we can see:\n",
    "# - 'ID' column contains identifiers like 'A28102_at' which match the gene expression data\n",
    "# - 'Gene Symbol' column contains standard gene symbols like 'GABRA3'\n",
    "\n",
    "# 2. Extract the gene mapping dataframe from the gene annotation\n",
    "gene_mapping = gene_annotation[['ID', 'Gene Symbol']].rename(columns={'Gene Symbol': 'Gene'})\n",
    "\n",
    "# Show the first few mappings to verify\n",
    "print(\"Gene mapping preview (first 5 rows):\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "# The apply_gene_mapping function handles the division of probe values among multiple genes\n",
    "# and summing up all probe values for each gene\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Preview the result\n",
    "print(\"\\nGene expression data preview (first 5 genes, 5 samples):\")\n",
    "print(gene_data.iloc[:5, :5])\n",
    "\n",
    "# Save the processed gene data to CSV\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e741c6c4",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "f28c46c2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:42:34.405722Z",
     "iopub.status.busy": "2025-03-25T08:42:34.405606Z",
     "iopub.status.idle": "2025-03-25T08:42:36.633007Z",
     "shell.execute_reply": "2025-03-25T08:42:36.632629Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data shape: (5921, 113)\n",
      "First few genes with their expression values after normalization:\n",
      "       GSM1676602  GSM1676603  GSM1676604  GSM1676605  GSM1676606  GSM1676607  \\\n",
      "Gene                                                                            \n",
      "A2M        1811.0      3908.0      3826.0      4674.0      1638.0      4061.0   \n",
      "AADAC        34.0        81.0       225.0        16.0       155.0        63.0   \n",
      "AAMP       2176.0      1885.0      3466.0      1332.0      2475.0      2772.0   \n",
      "AANAT       998.0       532.0       844.0       556.0      1340.0      1086.0   \n",
      "AARS1      1995.0      3358.0      1931.0      2293.0      2812.0      4343.0   \n",
      "\n",
      "       GSM1676608  GSM1676609  GSM1676610  GSM1676611  ...  GSM1676705  \\\n",
      "Gene                                                   ...               \n",
      "A2M        1715.0     14602.0      1861.0      2095.0  ...      1433.0   \n",
      "AADAC        38.0        61.0        64.0        76.0  ...       126.0   \n",
      "AAMP       1978.0      1606.0      1904.0      2563.0  ...      1761.0   \n",
      "AANAT       765.0       672.0       670.0       912.0  ...       730.0   \n",
      "AARS1      2849.0      2885.0      2221.0      3434.0  ...      2506.0   \n",
      "\n",
      "       GSM1676706  GSM1676707  GSM1676708  GSM1676709  GSM1676710  GSM1676711  \\\n",
      "Gene                                                                            \n",
      "A2M        1116.0      1520.0      3814.0      2911.0      2055.0      2130.0   \n",
      "AADAC        12.0       271.0       969.0       177.0       105.0      1856.0   \n",
      "AAMP       1789.0      2931.0      2151.0      1986.0      2154.0      1674.0   \n",
      "AANAT       860.0       671.0       571.0       560.0       861.0       776.0   \n",
      "AARS1      2094.0      2149.0      3076.0      3083.0      1767.0      1589.0   \n",
      "\n",
      "       GSM1676712  GSM1676713  GSM1676714  \n",
      "Gene                                       \n",
      "A2M         713.0       836.0      1095.0  \n",
      "AADAC       463.0       -10.0      1076.0  \n",
      "AAMP       2396.0      2458.0      2666.0  \n",
      "AANAT       834.0       861.0       834.0  \n",
      "AARS1      3100.0      3455.0      2659.0  \n",
      "\n",
      "[5 rows x 113 columns]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Endometrioid_Cancer/gene_data/GSE68600.csv\n",
      "Raw clinical data shape: (7, 114)\n",
      "Clinical features:\n",
      "                     GSM1676602  GSM1676603  GSM1676604  GSM1676605  \\\n",
      "Endometrioid_Cancer         0.0         0.0         1.0         1.0   \n",
      "\n",
      "                     GSM1676606  GSM1676607  GSM1676608  GSM1676609  \\\n",
      "Endometrioid_Cancer         1.0         1.0         1.0         1.0   \n",
      "\n",
      "                     GSM1676610  GSM1676611  ...  GSM1676705  GSM1676706  \\\n",
      "Endometrioid_Cancer         1.0         1.0  ...         1.0         0.0   \n",
      "\n",
      "                     GSM1676707  GSM1676708  GSM1676709  GSM1676710  \\\n",
      "Endometrioid_Cancer         0.0         0.0         1.0         0.0   \n",
      "\n",
      "                     GSM1676711  GSM1676712  GSM1676713  GSM1676714  \n",
      "Endometrioid_Cancer         0.0         0.0         0.0         0.0  \n",
      "\n",
      "[1 rows x 113 columns]\n",
      "Clinical features saved to ../../output/preprocess/Endometrioid_Cancer/clinical_data/GSE68600.csv\n",
      "Linked data shape: (113, 5922)\n",
      "Linked data preview (first 5 rows, first 5 columns):\n",
      "            Endometrioid_Cancer     A2M  AADAC    AAMP   AANAT\n",
      "GSM1676602                  0.0  1811.0   34.0  2176.0   998.0\n",
      "GSM1676603                  0.0  3908.0   81.0  1885.0   532.0\n",
      "GSM1676604                  1.0  3826.0  225.0  3466.0   844.0\n",
      "GSM1676605                  1.0  4674.0   16.0  1332.0   556.0\n",
      "GSM1676606                  1.0  1638.0  155.0  2475.0  1340.0\n",
      "Missing values before handling:\n",
      "  Trait (Endometrioid_Cancer) missing: 0 out of 113\n",
      "  Genes with >20% missing: 0\n",
      "  Samples with >5% missing genes: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (113, 5922)\n",
      "For the feature 'Endometrioid_Cancer', the least common label is '1.0' with 38 occurrences. This represents 33.63% of the dataset.\n",
      "The distribution of the feature 'Endometrioid_Cancer' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Endometrioid_Cancer/GSE68600.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Check if trait data is available before proceeding with clinical data extraction\n",
    "if trait_row is None:\n",
    "    print(\"Trait row is None. Cannot extract trait information from clinical data.\")\n",
    "    # Create an empty dataframe for clinical features\n",
    "    clinical_features = pd.DataFrame()\n",
    "    \n",
    "    # Create an empty dataframe for linked data\n",
    "    linked_data = pd.DataFrame()\n",
    "    \n",
    "    # Validate and save cohort info\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,  # Trait data is not available\n",
    "        is_biased=True,  # Not applicable but required\n",
    "        df=pd.DataFrame(),  # Empty dataframe\n",
    "        note=\"Dataset contains gene expression data but lacks clear trait indicators for Duchenne Muscular Dystrophy status.\"\n",
    "    )\n",
    "    print(\"Data was determined to be unusable due to missing trait indicators and was not saved\")\n",
    "else:\n",
    "    try:\n",
    "        # Get the file paths for the matrix file to extract clinical data\n",
    "        _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "        \n",
    "        # Get raw clinical data from the matrix file\n",
    "        _, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
    "        \n",
    "        # Verify clinical data structure\n",
    "        print(\"Raw clinical data shape:\", clinical_raw.shape)\n",
    "        \n",
    "        # Extract clinical features using the defined conversion functions\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_raw,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        print(\"Clinical features:\")\n",
    "        print(clinical_features)\n",
    "        \n",
    "        # Save clinical features to file\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        clinical_features.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "        \n",
    "        # 3. Link clinical and genetic data\n",
    "        linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "        print(f\"Linked data shape: {linked_data.shape}\")\n",
    "        print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "        print(linked_data.iloc[:5, :5])\n",
    "        \n",
    "        # 4. Handle missing values\n",
    "        print(\"Missing values before handling:\")\n",
    "        print(f\"  Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
    "        if 'Age' in linked_data.columns:\n",
    "            print(f\"  Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
    "        if 'Gender' in linked_data.columns:\n",
    "            print(f\"  Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
    "        \n",
    "        gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
    "        print(f\"  Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n",
    "        print(f\"  Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n",
    "        \n",
    "        cleaned_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
    "        \n",
    "        # 5. Evaluate bias in trait and demographic features\n",
    "        is_trait_biased = False\n",
    "        if len(cleaned_data) > 0:\n",
    "            trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
    "            is_trait_biased = trait_biased\n",
    "        else:\n",
    "            print(\"No data remains after handling missing values.\")\n",
    "            is_trait_biased = True\n",
    "        \n",
    "        # 6. Final validation and save\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=True, \n",
    "            is_biased=is_trait_biased, \n",
    "            df=cleaned_data,\n",
    "            note=\"Dataset contains gene expression data comparing Duchenne muscular dystrophy vs healthy samples.\"\n",
    "        )\n",
    "        \n",
    "        # 7. Save if usable\n",
    "        if is_usable and len(cleaned_data) > 0:\n",
    "            os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "            cleaned_data.to_csv(out_data_file)\n",
    "            print(f\"Linked data saved to {out_data_file}\")\n",
    "        else:\n",
    "            print(\"Data was determined to be unusable or empty and was not saved\")\n",
    "            \n",
    "    except Exception as e:\n",
    "        print(f\"Error processing data: {e}\")\n",
    "        # Handle the error case by still recording cohort info\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=False,  # Mark as not available due to processing issues\n",
    "            is_biased=True, \n",
    "            df=pd.DataFrame(),  # Empty dataframe\n",
    "            note=f\"Error processing data: {str(e)}\"\n",
    "        )\n",
    "        print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}