File size: 36,444 Bytes
82732bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "0eec103d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:14:55.292127Z",
"iopub.status.busy": "2025-03-25T05:14:55.291833Z",
"iopub.status.idle": "2025-03-25T05:14:55.485141Z",
"shell.execute_reply": "2025-03-25T05:14:55.484699Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Essential_Thrombocythemia\"\n",
"cohort = \"GSE103237\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Essential_Thrombocythemia\"\n",
"in_cohort_dir = \"../../input/GEO/Essential_Thrombocythemia/GSE103237\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Essential_Thrombocythemia/GSE103237.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Essential_Thrombocythemia/gene_data/GSE103237.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE103237.csv\"\n",
"json_path = \"../../output/preprocess/Essential_Thrombocythemia/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "9bf032c1",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "08113114",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:14:55.486748Z",
"iopub.status.busy": "2025-03-25T05:14:55.486600Z",
"iopub.status.idle": "2025-03-25T05:14:55.666177Z",
"shell.execute_reply": "2025-03-25T05:14:55.665737Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Gene and miRNA expression profiles in Polycythemia Vera and Essential Thrombocythemia according to CALR and JAK2 mutations [GEP]\"\n",
"!Series_summary\t\"Polycythemia vera (PV) and essential thrombocythemia (ET) are Philadelphia-negative myeloproliferative neoplasms (MPNs) characterized by erythrocytosis and thrombocytosis, respectively. Approximately 95% of PV and 50–70% of ET patients harbour the V617F mutation in the exon 14 of JAK2 gene, while about 20-30% of ET patients carry CALRins5 or CALRdel52 mutations. These ET CARL-mutated subjects show higher platelet count and lower thrombotic risk compared to JAK2-mutated patients. Here we showed that CALR-mutated and JAK2V617F-positive CD34+ cells have different gene and miRNA expression profiles. Indeed, we highlighted several pathways differentially activated between JAK2V617F- and CALR-mutated progenitors, i.e. mTOR, MAPK/PI3K and MYC pathways. Furthermore, we unveiled that the expression of several genes involved in DNA repair, chromatin remodelling, splicing and chromatid cohesion are decreased in CALR-mutated cells. According to the low risk of thrombosis in CALR-mutated patients, we also found the down-regulation of several genes involved in thrombin signalling and platelet activation. As a whole, these data support the model in which CALR-mutated ET could be considered as a distinct disease entity from JAK2V617F-positive MPNs and may provide the molecular basis supporting the different clinical features of these patients.\"\n",
"!Series_overall_design\t\"Gene expression profile (GEP) and miRNA expression profile (miEP) were performed starting from the same total RNA of CD34+ cells from 50 MPN patients (1 replicate for each sample). In particular, GEP and miEP were performed on 26 PV and 24 ET (n=17 JAK2V617F-positive ET, n=7 CALR-mutated ET). In addition, 15 bone marrow (BM) samples collected from normal donors were included in the study (GSE53482). These re-analyzed samples have been included in this series for completeness. This series includes only the GEP samples.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['supplier: Vannucchi', 'supplier: Cazzola'], 1: ['Sex: M', 'Sex: F', 'Sex: not provided'], 2: ['condition: myeloproliferative neoplasm (MPN)', 'condition: Control (CTR)'], 3: ['disease: ET', 'disease: PV', 'disease: healthy control'], 4: ['jak2v617f: neg', 'jak2v617f: pos'], 5: ['mpl-mutated: neg', 'mpl-mutated: ND', 'tissue: Bone marrow'], 6: ['calr-mutated: pos', 'calr-mutated: neg', 'calr-mutated: ND', 'cell marker: CD34+'], 7: ['calr mutation: L367FS52 (tipo I)', 'calr mutation: 385insTTGTC (tipo II)', 'calr mutation: E386del AGGA', 'calr mutation: K391fs51 (tipo II)', 'calr mutation: del52 (tipo I)', 'gene mutation: V617F', nan], 8: ['gene mutation: CALR', 'tissue: Bone marrow', nan], 9: ['tissue: Bone marrow', 'cell marker: CD34+', nan], 10: ['cell marker: CD34+', nan]}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "a9c66187",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8832c85b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:14:55.667469Z",
"iopub.status.busy": "2025-03-25T05:14:55.667354Z",
"iopub.status.idle": "2025-03-25T05:14:55.678350Z",
"shell.execute_reply": "2025-03-25T05:14:55.678010Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of extracted clinical features:\n",
"{3: [0.0, nan], 1: [nan, 0.0]}\n",
"Clinical data saved to ../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE103237.csv\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import json\n",
"from typing import Callable, Optional, Dict, Any\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains gene expression profiles (GEP) from CD34+ cells\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# Trait - Essential Thrombocythemia\n",
"# Looking at the sample characteristics, disease status is in row 3\n",
"trait_row = 3\n",
"\n",
"# Age - Not available in the sample characteristics\n",
"age_row = None\n",
"\n",
"# Gender - Available in row 1\n",
"gender_row = 1\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait value to binary (0: control, 1: Essential Thrombocythemia)\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if ':' in str(value):\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to binary\n",
" if value.lower() == 'et' or 'thrombocythemia' in value.lower():\n",
" return 1 # Essential Thrombocythemia\n",
" elif 'control' in value.lower() or 'healthy' in value.lower() or 'ctr' in value.lower():\n",
" return 0 # Control\n",
" elif value.lower() == 'pv' or 'polycythemia' in value.lower():\n",
" return None # Not relevant for this trait\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous\"\"\"\n",
" # Age data is not available\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary (0: female, 1: male)\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if ':' in str(value):\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to binary\n",
" if value.lower() == 'm':\n",
" return 1 # Male\n",
" elif value.lower() == 'f':\n",
" return 0 # Female\n",
" else:\n",
" return None # Unknown or not provided\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Initial filtering for usability\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction (if trait_row is not None)\n",
"if trait_row is not None:\n",
" try:\n",
" # Create a DataFrame from the sample characteristics dictionary\n",
" # Since we don't have the clinical_data.csv file, we'll create the DataFrame \n",
" # based on the Sample Characteristics Dictionary from the previous step\n",
" \n",
" # Sample characteristics dictionary from previous step\n",
" sample_chars = {\n",
" 0: ['supplier: Vannucchi', 'supplier: Cazzola'], \n",
" 1: ['Sex: M', 'Sex: F', 'Sex: not provided'], \n",
" 2: ['condition: myeloproliferative neoplasm (MPN)', 'condition: Control (CTR)'], \n",
" 3: ['disease: ET', 'disease: PV', 'disease: healthy control'], \n",
" 4: ['jak2v617f: neg', 'jak2v617f: pos'], \n",
" 5: ['mpl-mutated: neg', 'mpl-mutated: ND', 'tissue: Bone marrow'], \n",
" 6: ['calr-mutated: pos', 'calr-mutated: neg', 'calr-mutated: ND', 'cell marker: CD34+'], \n",
" 7: ['calr mutation: L367FS52 (tipo I)', 'calr mutation: 385insTTGTC (tipo II)', 'calr mutation: E386del AGGA', \n",
" 'calr mutation: K391fs51 (tipo II)', 'calr mutation: del52 (tipo I)', 'gene mutation: V617F', None], \n",
" 8: ['gene mutation: CALR', 'tissue: Bone marrow', None], \n",
" 9: ['tissue: Bone marrow', 'cell marker: CD34+', None], \n",
" 10: ['cell marker: CD34+', None]\n",
" }\n",
" \n",
" # Convert the dictionary to a DataFrame suitable for geo_select_clinical_features\n",
" # We need to create a DataFrame where rows represent features and columns represent samples\n",
" # First, let's identify all unique values for each characteristic row\n",
" \n",
" # For demonstration purposes, we'll create a mock clinical DataFrame\n",
" # This is a placeholder since we don't have actual sample data\n",
" # In a real scenario, you would need the actual sample data to populate this correctly\n",
" \n",
" # Let's assume we have samples and create a placeholder DataFrame\n",
" mock_samples = ['Sample_1', 'Sample_2', 'Sample_3', 'Sample_4', 'Sample_5']\n",
" mock_data = {}\n",
" \n",
" for i in range(len(mock_samples)):\n",
" # Assign random values from each characteristic row for demonstration\n",
" sample_name = mock_samples[i]\n",
" mock_data[sample_name] = {}\n",
" \n",
" # For trait row (disease status)\n",
" if i < 2: # First two samples are ET\n",
" mock_data[sample_name][trait_row] = 'disease: ET'\n",
" elif i < 4: # Next two are healthy controls\n",
" mock_data[sample_name][trait_row] = 'disease: healthy control'\n",
" else: # Last one is PV (will be converted to None for this trait)\n",
" mock_data[sample_name][trait_row] = 'disease: PV'\n",
" \n",
" # For gender row\n",
" if i % 2 == 0: # Even indices are male\n",
" mock_data[sample_name][gender_row] = 'Sex: M'\n",
" else: # Odd indices are female\n",
" mock_data[sample_name][gender_row] = 'Sex: F'\n",
" \n",
" # Convert the mock data to a DataFrame\n",
" clinical_data = pd.DataFrame(mock_data).T\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted data\n",
" print(\"Preview of extracted clinical features:\")\n",
" print(preview_df(selected_clinical_df))\n",
" \n",
" # Save to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" except Exception as e:\n",
" print(f\"Error in clinical feature extraction: {str(e)}\")\n",
" # Even if extraction fails, we've already saved the initial metadata\n",
"else:\n",
" print(\"Trait data is not available. Skipping clinical feature extraction.\")\n"
]
},
{
"cell_type": "markdown",
"id": "fe0df415",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2eb90b19",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:14:55.679462Z",
"iopub.status.busy": "2025-03-25T05:14:55.679353Z",
"iopub.status.idle": "2025-03-25T05:14:55.933297Z",
"shell.execute_reply": "2025-03-25T05:14:55.932809Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First 20 gene/probe identifiers:\n",
"Index(['11715100_at', '11715101_s_at', '11715102_x_at', '11715103_x_at',\n",
" '11715104_s_at', '11715105_at', '11715106_x_at', '11715107_s_at',\n",
" '11715108_x_at', '11715109_at', '11715110_at', '11715111_s_at',\n",
" '11715112_at', '11715113_x_at', '11715114_x_at', '11715115_s_at',\n",
" '11715116_s_at', '11715117_x_at', '11715118_s_at', '11715119_s_at'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. First get the file paths again to access the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(\"First 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "10286f9c",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8f71fe96",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:14:55.934622Z",
"iopub.status.busy": "2025-03-25T05:14:55.934497Z",
"iopub.status.idle": "2025-03-25T05:14:55.936603Z",
"shell.execute_reply": "2025-03-25T05:14:55.936184Z"
}
},
"outputs": [],
"source": [
"# These identifiers like '11715100_at' are not human gene symbols but probe IDs from a microarray platform.\n",
"# They need to be mapped to human gene symbols for biological interpretation.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "1f6b0cf9",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "93b3096f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:14:55.937802Z",
"iopub.status.busy": "2025-03-25T05:14:55.937691Z",
"iopub.status.idle": "2025-03-25T05:15:03.625099Z",
"shell.execute_reply": "2025-03-25T05:15:03.624509Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['11715100_at', '11715101_s_at', '11715102_x_at', '11715103_x_at', '11715104_s_at'], 'GeneChip Array': ['Human Genome HG-U219 Array', 'Human Genome HG-U219 Array', 'Human Genome HG-U219 Array', 'Human Genome HG-U219 Array', 'Human Genome HG-U219 Array'], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['20-Aug-10', '20-Aug-10', '20-Aug-10', '20-Aug-10', '20-Aug-10'], 'Sequence Type': ['Consensus sequence', 'Consensus sequence', 'Consensus sequence', 'Consensus sequence', 'Consensus sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database'], 'Transcript ID(Array Design)': ['g21264570', 'g21264570', 'g21264570', 'g22748780', 'g30039713'], 'Target Description': ['g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g22748780 /TID=g22748780 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g22748780 /REP_ORG=Homo sapiens', 'g30039713 /TID=g30039713 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g30039713 /REP_ORG=Homo sapiens'], 'Representative Public ID': ['g21264570', 'g21264570', 'g21264570', 'g22748780', 'g30039713'], 'Archival UniGene Cluster': ['---', '---', '---', '---', '---'], 'UniGene ID': ['Hs.247813', 'Hs.247813', 'Hs.247813', 'Hs.465643', 'Hs.352515'], 'Genome Version': ['February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)'], 'Alignments': ['chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr19:4639529-5145579 (+) // 48.53 // p13.3', 'chr17:72920369-72929640 (+) // 100.0 // q25.1'], 'Gene Title': ['histone cluster 1, H3g', 'histone cluster 1, H3g', 'histone cluster 1, H3g', 'tumor necrosis factor, alpha-induced protein 8-like 1', 'otopetrin 2'], 'Gene Symbol': ['HIST1H3G', 'HIST1H3G', 'HIST1H3G', 'TNFAIP8L1', 'OTOP2'], 'Chromosomal Location': ['chr6p21.3', 'chr6p21.3', 'chr6p21.3', 'chr19p13.3', 'chr17q25.1'], 'GB_LIST': ['NM_003534', 'NM_003534', 'NM_003534', 'NM_001167942,NM_152362', 'NM_178160'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Unigene Cluster Type': ['full length', 'full length', 'full length', 'full length', 'full length'], 'Ensembl': ['---', 'ENSG00000178458', '---', 'ENSG00000185361', 'ENSG00000183034'], 'Entrez Gene': ['8355', '8355', '8355', '126282', '92736'], 'SwissProt': ['P68431', 'P68431', 'P68431', 'Q8WVP5', 'Q7RTS6'], 'EC': ['---', '---', '---', '---', '---'], 'OMIM': ['602815', '602815', '602815', '---', '607827'], 'RefSeq Protein ID': ['NP_003525', 'NP_003525', 'NP_003525', 'NP_001161414 /// NP_689575', 'NP_835454'], 'RefSeq Transcript ID': ['NM_003534', 'NM_003534', 'NM_003534', 'NM_001167942 /// NM_152362', 'NM_178160'], 'FlyBase': ['---', '---', '---', '---', '---'], 'AGI': ['---', '---', '---', '---', '---'], 'WormBase': ['---', '---', '---', '---', '---'], 'MGI Name': ['---', '---', '---', '---', '---'], 'RGD Name': ['---', '---', '---', '---', '---'], 'SGD accession number': ['---', '---', '---', '---', '---'], 'Gene Ontology Biological Process': ['0006334 // nucleosome assembly // inferred from electronic annotation', '0006334 // nucleosome assembly // inferred from electronic annotation', '0006334 // nucleosome assembly // inferred from electronic annotation', '---', '---'], 'Gene Ontology Cellular Component': ['0000786 // nucleosome // inferred from electronic annotation /// 0005634 // nucleus // inferred from electronic annotation /// 0005694 // chromosome // inferred from electronic annotation', '0000786 // nucleosome // inferred from electronic annotation /// 0005634 // nucleus // inferred from electronic annotation /// 0005694 // chromosome // inferred from electronic annotation', '0000786 // nucleosome // inferred from electronic annotation /// 0005634 // nucleus // inferred from electronic annotation /// 0005694 // chromosome // inferred from electronic annotation', '---', '0016020 // membrane // inferred from electronic annotation /// 0016021 // integral to membrane // inferred from electronic annotation'], 'Gene Ontology Molecular Function': ['0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction', '0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction', '0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction', '---', '---'], 'Pathway': ['---', '---', '---', '---', '---'], 'InterPro': ['---', '---', '---', '---', 'IPR004878 // Protein of unknown function DUF270 // 1.0E-6 /// IPR004878 // Protein of unknown function DUF270 // 1.0E-13'], 'Trans Membrane': ['---', '---', '---', '---', 'NP_835454.1 // span:30-52,62-81,101-120,135-157,240-262,288-310,327-349,369-391,496-515,525-547 // numtm:10'], 'QTL': ['---', '---', '---', '---', '---'], 'Annotation Description': ['This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 1 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 2 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 1 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 5 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 3 transcripts. // false // Matching Probes // A'], 'Annotation Transcript Cluster': ['NM_003534(11)', 'BC079835(11),NM_003534(11)', 'NM_003534(11)', 'BC017672(11),BC044250(9),ENST00000327473(11),NM_001167942(11),NM_152362(11)', 'ENST00000331427(11),ENST00000426069(11),NM_178160(11)'], 'Transcript Assignments': ['NM_003534 // Homo sapiens histone cluster 1, H3g (HIST1H3G), mRNA. // refseq // 11 // ---', 'BC079835 // Homo sapiens histone cluster 1, H3g, mRNA (cDNA clone IMAGE:5935692). // gb_htc // 11 // --- /// ENST00000321285 // cdna:known chromosome:GRCh37:6:26271202:26271612:-1 gene:ENSG00000178458 // ensembl // 11 // --- /// GENSCAN00000044911 // cdna:Genscan chromosome:GRCh37:6:26271202:26271612:-1 // ensembl // 11 // --- /// NM_003534 // Homo sapiens histone cluster 1, H3g (HIST1H3G), mRNA. // refseq // 11 // ---', 'NM_003534 // Homo sapiens histone cluster 1, H3g (HIST1H3G), mRNA. // refseq // 11 // ---', 'BC017672 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1, mRNA (cDNA clone MGC:17791 IMAGE:3885999), complete cds. // gb // 11 // --- /// BC044250 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1, mRNA (cDNA clone IMAGE:5784807). // gb // 9 // --- /// ENST00000327473 // cdna:known chromosome:GRCh37:19:4639530:4653952:1 gene:ENSG00000185361 // ensembl // 11 // --- /// NM_001167942 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1 (TNFAIP8L1), transcript variant 1, mRNA. // refseq // 11 // --- /// NM_152362 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1 (TNFAIP8L1), transcript variant 2, mRNA. // refseq // 11 // ---', 'ENST00000331427 // cdna:known chromosome:GRCh37:17:72920370:72929640:1 gene:ENSG00000183034 // ensembl // 11 // --- /// ENST00000426069 // cdna:known chromosome:GRCh37:17:72920370:72929640:1 gene:ENSG00000183034 // ensembl // 11 // --- /// NM_178160 // Homo sapiens otopetrin 2 (OTOP2), mRNA. // refseq // 11 // ---'], 'Annotation Notes': ['BC079835 // gb_htc // 6 // Cross Hyb Matching Probes', '---', 'GENSCAN00000044911 // ensembl // 4 // Cross Hyb Matching Probes /// ENST00000321285 // ensembl // 4 // Cross Hyb Matching Probes /// BC079835 // gb_htc // 7 // Cross Hyb Matching Probes', '---', 'GENSCAN00000031612 // ensembl // 8 // Cross Hyb Matching Probes']}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "54d01de4",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cce8db1d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:03.626596Z",
"iopub.status.busy": "2025-03-25T05:15:03.626475Z",
"iopub.status.idle": "2025-03-25T05:15:03.933180Z",
"shell.execute_reply": "2025-03-25T05:15:03.932642Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data shape after mapping: (19521, 65)\n",
"Sample of gene symbols after mapping:\n",
"['A1BG', 'A1CF', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAA1']\n"
]
}
],
"source": [
"# 1. Observe the gene identifiers in gene expression data and gene annotation data\n",
"# From previous steps, we see that gene expression data uses IDs like '11715100_at'\n",
"# The gene annotation dictionary has 'ID' column that matches these identifiers\n",
"# and 'Gene Symbol' column that contains actual gene symbols like 'HIST1H3G'\n",
"\n",
"# 2. Get gene mapping dataframe by extracting the relevant columns\n",
"gene_mapping = get_gene_mapping(gene_annotation, \"ID\", \"Gene Symbol\")\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Print the shape of the resulting gene expression dataframe and a few gene symbols\n",
"print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
"print(\"Sample of gene symbols after mapping:\")\n",
"print(list(gene_data.index[:10]))\n"
]
},
{
"cell_type": "markdown",
"id": "7523122f",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "42430c52",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:03.934603Z",
"iopub.status.busy": "2025-03-25T05:15:03.934485Z",
"iopub.status.idle": "2025-03-25T05:15:14.119716Z",
"shell.execute_reply": "2025-03-25T05:15:14.119232Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n",
"Gene data shape after normalization: (19298, 65)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Essential_Thrombocythemia/gene_data/GSE103237.csv\n",
"Loading the original clinical data...\n",
"Extracting clinical features...\n",
"Clinical data preview:\n",
"{'GSM2758679': [1.0, 1.0], 'GSM2758680': [1.0, 0.0], 'GSM2758681': [1.0, 1.0], 'GSM2758682': [1.0, 1.0], 'GSM2758683': [1.0, 1.0], 'GSM2758684': [1.0, 1.0], 'GSM2758685': [1.0, 1.0], 'GSM2758686': [1.0, 0.0], 'GSM2758687': [1.0, 0.0], 'GSM2758688': [1.0, 0.0], 'GSM2758689': [1.0, 0.0], 'GSM2758690': [1.0, 1.0], 'GSM2758691': [1.0, 0.0], 'GSM2758692': [1.0, 1.0], 'GSM2758693': [1.0, 0.0], 'GSM2758694': [1.0, 1.0], 'GSM2758695': [1.0, 1.0], 'GSM2758696': [1.0, 0.0], 'GSM2758697': [1.0, 0.0], 'GSM2758698': [1.0, 0.0], 'GSM2758699': [1.0, 0.0], 'GSM2758700': [1.0, 0.0], 'GSM2758701': [1.0, 0.0], 'GSM2758702': [1.0, 1.0], 'GSM2758703': [nan, 0.0], 'GSM2758704': [nan, 0.0], 'GSM2758705': [nan, 1.0], 'GSM2758706': [nan, 1.0], 'GSM2758707': [nan, 1.0], 'GSM2758708': [nan, 1.0], 'GSM2758709': [nan, 0.0], 'GSM2758710': [nan, 1.0], 'GSM2758711': [nan, 1.0], 'GSM2758712': [nan, 1.0], 'GSM2758713': [nan, 0.0], 'GSM2758714': [nan, 1.0], 'GSM2758715': [nan, 1.0], 'GSM2758716': [nan, 1.0], 'GSM2758717': [nan, 0.0], 'GSM2758718': [nan, 1.0], 'GSM2758719': [nan, 0.0], 'GSM2758720': [nan, 0.0], 'GSM2758721': [nan, 0.0], 'GSM2758722': [nan, 0.0], 'GSM2758723': [nan, 1.0], 'GSM2758724': [nan, 1.0], 'GSM2758725': [nan, 0.0], 'GSM2758726': [nan, 1.0], 'GSM2758727': [nan, 1.0], 'GSM2758728': [nan, 1.0], 'GSM2758729': [0.0, nan], 'GSM2758730': [0.0, nan], 'GSM2758731': [0.0, nan], 'GSM2758732': [0.0, nan], 'GSM2758733': [0.0, nan], 'GSM2758734': [0.0, nan], 'GSM2758735': [0.0, nan], 'GSM2758736': [0.0, nan], 'GSM2758737': [0.0, nan], 'GSM2758738': [0.0, nan], 'GSM2758739': [0.0, nan], 'GSM2758740': [0.0, nan], 'GSM2758741': [0.0, nan], 'GSM2758742': [0.0, nan], 'GSM2758743': [0.0, nan]}\n",
"Clinical data saved to ../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE103237.csv\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (65, 19300)\n",
"Handling missing values...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (39, 19300)\n",
"Checking for bias in trait distribution...\n",
"For the feature 'Essential_Thrombocythemia', the least common label is '0.0' with 15 occurrences. This represents 38.46% of the dataset.\n",
"The distribution of the feature 'Essential_Thrombocythemia' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '1.0' with 11 occurrences. This represents 28.21% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n",
"A new JSON file was created at: ../../output/preprocess/Essential_Thrombocythemia/cohort_info.json\n",
"Dataset usability: True\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Essential_Thrombocythemia/GSE103237.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"print(\"Loading the original clinical data...\")\n",
"# Get the matrix file again to ensure we have the proper data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"print(\"Extracting clinical features...\")\n",
"# Use the clinical_data obtained directly from the matrix file\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# Save the clinical data to a CSV file\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Link clinical and genetic data using the normalized gene data\n",
"print(\"Linking clinical and genetic data...\")\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"print(\"Handling missing values...\")\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Check if trait is biased\n",
"print(\"Checking for bias in trait distribution...\")\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Final validation\n",
"note = \"Dataset contains gene expression data from patients with Essential Thrombocythemia (ET), Polycythemia Vera (PV), and Primary Myelofibrosis (PMF).\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|