File size: 30,963 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "1b24d76c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:59:47.005233Z",
     "iopub.status.busy": "2025-03-25T06:59:47.005052Z",
     "iopub.status.idle": "2025-03-25T06:59:47.176302Z",
     "shell.execute_reply": "2025-03-25T06:59:47.175929Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Bone_Density\"\n",
    "cohort = \"GSE56814\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Bone_Density\"\n",
    "in_cohort_dir = \"../../input/GEO/Bone_Density/GSE56814\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Bone_Density/GSE56814.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Bone_Density/gene_data/GSE56814.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Bone_Density/clinical_data/GSE56814.csv\"\n",
    "json_path = \"../../output/preprocess/Bone_Density/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3f2550e0",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "9a019a2d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:59:47.177792Z",
     "iopub.status.busy": "2025-03-25T06:59:47.177642Z",
     "iopub.status.idle": "2025-03-25T06:59:47.295647Z",
     "shell.execute_reply": "2025-03-25T06:59:47.295342Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression study of blood monocytes in pre- and postmenopausal females with low or high bone mineral density (HuEx-1_0-st-v2)\"\n",
      "!Series_summary\t\"Comparison of circulating monocytes from pre- and postmenopausal females with low or high bone mineral density (BMD). Circulating monocytes are progenitors of osteoclasts, and produce factors important to bone metabolism. Results provide insight into the role of monocytes in osteoporosis.\"\n",
      "!Series_summary\t\"We identify osteoporosis genes by microarray analyses of monocytes in high vs. low hip BMD (bone mineral density) subjects.\"\n",
      "!Series_overall_design\t\"Microarray analyses of monocytes were performed using Affymetrix 1.0 ST arrays in 73 Caucasian females (age: 47-56) with extremely high (mean ZBMD =1.38, n=42, 16 pre- and 26 postmenopausal subjects) or low hip BMD (mean ZBMD=-1.05, n=31, 15 pre- and 16 postmenopausal subjects). Differential gene expression analysis in high vs. low BMD subjects was conducted in the total cohort as well as pre- and post-menopausal subjects.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['gender: Female'], 1: ['bone mineral density: high BMD', 'bone mineral density: low BMD'], 2: ['state: postmenopausal', 'state: premenopausal'], 3: ['cell type: monocytes']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "731351d4",
   "metadata": {},
   "source": [
    "### Step 2: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "95b1710a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:59:47.296973Z",
     "iopub.status.busy": "2025-03-25T06:59:47.296862Z",
     "iopub.status.idle": "2025-03-25T06:59:47.581886Z",
     "shell.execute_reply": "2025-03-25T06:59:47.581546Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Bone_Density/gene_data/GSE56814.csv\n",
      "Clinical data before extraction:\n",
      "         !Sample_geo_accession                      GSM1369683  \\\n",
      "0  !Sample_characteristics_ch1                  gender: Female   \n",
      "1  !Sample_characteristics_ch1  bone mineral density: high BMD   \n",
      "2  !Sample_characteristics_ch1           state: postmenopausal   \n",
      "3  !Sample_characteristics_ch1            cell type: monocytes   \n",
      "\n",
      "                       GSM1369684                      GSM1369685  \\\n",
      "0                  gender: Female                  gender: Female   \n",
      "1  bone mineral density: high BMD  bone mineral density: high BMD   \n",
      "2           state: postmenopausal           state: postmenopausal   \n",
      "3            cell type: monocytes            cell type: monocytes   \n",
      "\n",
      "                       GSM1369686                     GSM1369687  \\\n",
      "0                  gender: Female                 gender: Female   \n",
      "1  bone mineral density: high BMD  bone mineral density: low BMD   \n",
      "2           state: postmenopausal          state: postmenopausal   \n",
      "3            cell type: monocytes           cell type: monocytes   \n",
      "\n",
      "                      GSM1369688                      GSM1369689  \\\n",
      "0                 gender: Female                  gender: Female   \n",
      "1  bone mineral density: low BMD  bone mineral density: high BMD   \n",
      "2          state: postmenopausal           state: postmenopausal   \n",
      "3           cell type: monocytes            cell type: monocytes   \n",
      "\n",
      "                       GSM1369690                      GSM1369691  ...  \\\n",
      "0                  gender: Female                  gender: Female  ...   \n",
      "1  bone mineral density: high BMD  bone mineral density: high BMD  ...   \n",
      "2           state: postmenopausal           state: postmenopausal  ...   \n",
      "3            cell type: monocytes            cell type: monocytes  ...   \n",
      "\n",
      "                      GSM1369746                     GSM1369747  \\\n",
      "0                 gender: Female                 gender: Female   \n",
      "1  bone mineral density: low BMD  bone mineral density: low BMD   \n",
      "2           state: premenopausal          state: postmenopausal   \n",
      "3           cell type: monocytes           cell type: monocytes   \n",
      "\n",
      "                       GSM1369748                      GSM1369749  \\\n",
      "0                  gender: Female                  gender: Female   \n",
      "1  bone mineral density: high BMD  bone mineral density: high BMD   \n",
      "2            state: premenopausal            state: premenopausal   \n",
      "3            cell type: monocytes            cell type: monocytes   \n",
      "\n",
      "                       GSM1369750                      GSM1369751  \\\n",
      "0                  gender: Female                  gender: Female   \n",
      "1  bone mineral density: high BMD  bone mineral density: high BMD   \n",
      "2           state: postmenopausal           state: postmenopausal   \n",
      "3            cell type: monocytes            cell type: monocytes   \n",
      "\n",
      "                      GSM1369752                      GSM1369753  \\\n",
      "0                 gender: Female                  gender: Female   \n",
      "1  bone mineral density: low BMD  bone mineral density: high BMD   \n",
      "2           state: premenopausal            state: premenopausal   \n",
      "3           cell type: monocytes            cell type: monocytes   \n",
      "\n",
      "                      GSM1369754                     GSM1369755  \n",
      "0                 gender: Female                 gender: Female  \n",
      "1  bone mineral density: low BMD  bone mineral density: low BMD  \n",
      "2           state: premenopausal          state: postmenopausal  \n",
      "3           cell type: monocytes           cell type: monocytes  \n",
      "\n",
      "[4 rows x 74 columns]\n",
      "Clinical features after extraction:\n",
      "              GSM1369683  GSM1369684  GSM1369685  GSM1369686  GSM1369687  \\\n",
      "Bone_Density         1.0         1.0         1.0         1.0         0.0   \n",
      "\n",
      "              GSM1369688  GSM1369689  GSM1369690  GSM1369691  GSM1369692  ...  \\\n",
      "Bone_Density         0.0         1.0         1.0         1.0         1.0  ...   \n",
      "\n",
      "              GSM1369746  GSM1369747  GSM1369748  GSM1369749  GSM1369750  \\\n",
      "Bone_Density         0.0         0.0         1.0         1.0         1.0   \n",
      "\n",
      "              GSM1369751  GSM1369752  GSM1369753  GSM1369754  GSM1369755  \n",
      "Bone_Density         1.0         0.0         1.0         0.0         0.0  \n",
      "\n",
      "[1 rows x 73 columns]\n",
      "Clinical data saved to ../../output/preprocess/Bone_Density/clinical_data/GSE56814.csv\n",
      "Linked data preview:\n",
      "            Bone_Density\n",
      "GSM1369683           1.0\n",
      "GSM1369684           1.0\n",
      "GSM1369685           1.0\n",
      "GSM1369686           1.0\n",
      "GSM1369687           0.0\n",
      "Quartiles for 'Bone_Density':\n",
      "  25%: nan\n",
      "  50% (Median): nan\n",
      "  75%: nan\n",
      "Min: nan\n",
      "Max: nan\n",
      "The distribution of the feature 'Bone_Density' in this dataset is fine.\n",
      "\n",
      "Abnormality detected in the cohort: GSE56814. Preprocessing failed.\n",
      "Data was determined to be unusable and was not saved\n"
     ]
    }
   ],
   "source": [
    "# 1. Get gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Select clinical features from the clinical data\n",
    "# Based on the sample characteristics, we need to extract relevant clinical features\n",
    "print(\"Clinical data before extraction:\")\n",
    "print(clinical_data.head())\n",
    "\n",
    "def convert_bmd(value):\n",
    "    if isinstance(value, str):\n",
    "        if 'high BMD' in value:\n",
    "            return 1\n",
    "        elif 'low BMD' in value:\n",
    "            return 0\n",
    "    return None\n",
    "\n",
    "# Row 1 contains bone mineral density information\n",
    "clinical_features = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=1,\n",
    "    convert_trait=convert_bmd\n",
    ")\n",
    "\n",
    "print(\"Clinical features after extraction:\")\n",
    "print(clinical_features)\n",
    "\n",
    "# Save clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "print(\"Linked data preview:\")\n",
    "print(linked_data.head())\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "\n",
    "# 5. Determine whether the trait and demographic features are severely biased\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 6. Conduct quality check and save the cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_trait_biased,\n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains bone mineral density information categorized as high or low BMD.\"\n",
    ")\n",
    "\n",
    "# 7. If the linked data is usable, save it as a CSV file\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ca927ae1",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ac5df793",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:59:47.583409Z",
     "iopub.status.busy": "2025-03-25T06:59:47.583285Z",
     "iopub.status.idle": "2025-03-25T06:59:47.588753Z",
     "shell.execute_reply": "2025-03-25T06:59:47.588437Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data file not found at: ../../input/GEO/Bone_Density/GSE56814/clinical_characteristics.csv\n",
      "Based on previous output, clinical data was already processed but the cohort was marked as unusable.\n",
      "Dataset analysis completed.\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# From the previous output, we can see:\n",
    "# - Gene data is available (was normalized and saved)\n",
    "# - Clinical data features show gender, bone mineral density, menopausal state, and cell type\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "is_gene_available = True  # Gene expression data is available\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Identify rows containing trait, age, and gender information\n",
    "trait_row = 1  # \"bone mineral density: low BMD\" is in row 1\n",
    "age_row = None  # Age doesn't appear to be available in the sample characteristics\n",
    "gender_row = 0  # \"gender: Female\" is in row 0\n",
    "\n",
    "# 2.2 Define conversion functions\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip().lower()\n",
    "    \n",
    "    if \"high bmd\" in value:\n",
    "        return 1.0\n",
    "    elif \"low bmd\" in value:\n",
    "        return 0.0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Age conversion function not needed as age_row is None\n",
    "convert_age = None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip().lower()\n",
    "    \n",
    "    if \"female\" in value:\n",
    "        return 0\n",
    "    elif \"male\" in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata for initial filtering\n",
    "is_trait_available = trait_row is not None\n",
    "initial_validation = validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. If we have not already processed the data, proceed with clinical feature extraction\n",
    "# Use the clinical_data from the previous output if available\n",
    "if trait_row is not None:\n",
    "    try:\n",
    "        # Try to load the clinical data that may have been created earlier in the pipeline\n",
    "        clinical_data_path = os.path.join(in_cohort_dir, \"clinical_characteristics.csv\")\n",
    "        if os.path.exists(clinical_data_path):\n",
    "            clinical_data = pd.read_csv(clinical_data_path)\n",
    "            \n",
    "            # Extract clinical features\n",
    "            selected_clinical_df = geo_select_clinical_features(\n",
    "                clinical_df=clinical_data,\n",
    "                trait=trait,\n",
    "                trait_row=trait_row,\n",
    "                convert_trait=convert_trait,\n",
    "                age_row=age_row,\n",
    "                convert_age=convert_age,\n",
    "                gender_row=gender_row,\n",
    "                convert_gender=convert_gender\n",
    "            )\n",
    "            \n",
    "            # Preview the extracted data\n",
    "            preview = preview_df(selected_clinical_df)\n",
    "            print(\"Preview of extracted clinical features:\")\n",
    "            for feature, values in preview.items():\n",
    "                print(f\"{feature}: {values}\")\n",
    "            \n",
    "            # Ensure the output directory exists\n",
    "            os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "            \n",
    "            # Save the extracted clinical data\n",
    "            selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "            print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "        else:\n",
    "            print(f\"Clinical data file not found at: {clinical_data_path}\")\n",
    "            print(\"Based on previous output, clinical data was already processed but the cohort was marked as unusable.\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing clinical data: {e}\")\n",
    "        print(\"Moving forward with the knowledge that this dataset may have issues.\")\n",
    "else:\n",
    "    print(\"No trait data available. Skipping clinical feature extraction.\")\n",
    "\n",
    "print(\"Dataset analysis completed.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5785cb14",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "27dcc109",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:59:47.590004Z",
     "iopub.status.busy": "2025-03-25T06:59:47.589889Z",
     "iopub.status.idle": "2025-03-25T06:59:47.777073Z",
     "shell.execute_reply": "2025-03-25T06:59:47.776718Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['2315554', '2315633', '2315674', '2315739', '2315894', '2315918',\n",
      "       '2315951', '2316218', '2316245', '2316379', '2316558', '2316605',\n",
      "       '2316746', '2316905', '2316953', '2317246', '2317317', '2317434',\n",
      "       '2317472', '2317512'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f4fa7649",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "f22b7f26",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:59:47.778464Z",
     "iopub.status.busy": "2025-03-25T06:59:47.778335Z",
     "iopub.status.idle": "2025-03-25T06:59:47.780292Z",
     "shell.execute_reply": "2025-03-25T06:59:47.780008Z"
    }
   },
   "outputs": [],
   "source": [
    "# These identifiers don't appear to be human gene symbols\n",
    "# They look like probe IDs from a microarray platform\n",
    "# Looking at the numeric format (2315554, etc.), these are likely Illumina or Affymetrix probe IDs\n",
    "# They will need to be mapped to human gene symbols for meaningful analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5df9778e",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "0787f3e8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:59:47.781543Z",
     "iopub.status.busy": "2025-03-25T06:59:47.781434Z",
     "iopub.status.idle": "2025-03-25T06:59:51.371548Z",
     "shell.execute_reply": "2025-03-25T06:59:51.371021Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'GB_LIST': ['NR_024005,NR_034090,NR_024004,AK093685', 'DQ786314', nan, nan, 'DQ786265'], 'SPOT_ID': ['chr1:11884-14409', 'chr1:14760-15198', 'chr1:19408-19712', 'chr1:25142-25532', 'chr1:27563-27813'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': ['11884', '14760', '19408', '25142', '27563'], 'RANGE_STOP': ['14409', '15198', '19712', '25532', '27813'], 'total_probes': ['20', '8', '4', '4', '4'], 'gene_assignment': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---'], 'mrna_assignment': ['NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 (DDX11L9), non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 100 // 75 // 15 // 15 // 0 /// AK093685 // GenBank // Homo sapiens cDNA FLJ36366 fis, clone THYMU2007824. // chr1 // 94 // 80 // 15 // 16 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000518655 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000253101 // chr1 // 100 // 80 // 16 // 16 // 0', 'DQ786314 // GenBank // Homo sapiens clone HLS_IMAGE_811138 mRNA sequence. // chr1 // 100 // 38 // 3 // 3 // 0', '---', '---', 'DQ786265 // GenBank // Homo sapiens clone HLS_IMAGE_298685 mRNA sequence. // chr1 // 100 // 100 // 4 // 4 // 0'], 'category': ['main', 'main', '---', '---', 'main']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "33bf7081",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "86a4837c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:59:51.373126Z",
     "iopub.status.busy": "2025-03-25T06:59:51.373015Z",
     "iopub.status.idle": "2025-03-25T06:59:51.844303Z",
     "shell.execute_reply": "2025-03-25T06:59:51.843750Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping preview (first 5 rows):\n",
      "        ID                                               Gene\n",
      "0  2315100  NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-As...\n",
      "1  2315106                                                ---\n",
      "2  2315109                                                ---\n",
      "3  2315111                                                ---\n",
      "4  2315113                                                ---\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data after mapping - shape: (48895, 73)\n",
      "First 5 gene symbols and first 3 samples:\n",
      "      GSM1369683  GSM1369684  GSM1369685\n",
      "Gene                                    \n",
      "A-     18.363212   19.338694   19.496579\n",
      "A-2     3.049234    3.030850    2.939030\n",
      "A-52    4.685952    4.691996    4.603244\n",
      "A-E     1.581215    1.632573    1.682945\n",
      "A-I     5.532182    5.607333    5.265896\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine which columns to use for mapping\n",
    "# From the gene annotation preview, I can see:\n",
    "# - 'ID' column contains identifiers that match the row IDs seen in the gene expression data\n",
    "# - 'gene_assignment' column contains gene symbol information\n",
    "\n",
    "# 2. Extract gene mapping from the annotation dataframe\n",
    "# Create the mapping dataframe with the probe IDs and gene symbols\n",
    "gene_mapping = get_gene_mapping(\n",
    "    annotation=gene_annotation,\n",
    "    prob_col=\"ID\",\n",
    "    gene_col=\"gene_assignment\"\n",
    ")\n",
    "\n",
    "print(\"Gene mapping preview (first 5 rows):\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping)\n",
    "\n",
    "print(f\"Gene data after mapping - shape: {gene_data.shape}\")\n",
    "print(\"First 5 gene symbols and first 3 samples:\")\n",
    "print(gene_data.iloc[:5, :3])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "88a96fa8",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "bab1d929",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:59:51.846180Z",
     "iopub.status.busy": "2025-03-25T06:59:51.846054Z",
     "iopub.status.idle": "2025-03-25T07:00:03.071359Z",
     "shell.execute_reply": "2025-03-25T07:00:03.070865Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Bone_Density/gene_data/GSE56814.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For the feature 'Bone_Density', the least common label is '0.0' with 31 occurrences. This represents 42.47% of the dataset.\n",
      "The distribution of the feature 'Bone_Density' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Bone_Density/GSE56814.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the previously saved clinical data and link with genetic data\n",
    "clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "\n",
    "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(True, cohort, json_path, True, True, is_trait_biased, unbiased_linked_data)\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}