File size: 18,784 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3f60932d",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Breast_Cancer\"\n",
    "cohort = \"GSE283522\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Breast_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Breast_Cancer/GSE283522\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Breast_Cancer/GSE283522.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Breast_Cancer/gene_data/GSE283522.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Breast_Cancer/clinical_data/GSE283522.csv\"\n",
    "json_path = \"../../output/preprocess/Breast_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e9505ea4",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4a5273b",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2b13b1c5",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0f5284ae",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the information in the background metadata, this dataset contains RNA-seq data\n",
    "# from FFPE breast tumors, indicating it contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# Trait (Breast Cancer) data is available\n",
    "# Row 6 contains 'sample category' which indicates whether the sample is invasive breast cancer \n",
    "# or other types like healthy, DCIS, etc.\n",
    "trait_row = 6\n",
    "\n",
    "# Age data is available in row 2\n",
    "age_row = 2\n",
    "\n",
    "# Gender/Sex data is available in row 5\n",
    "gender_row = 5\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait data to binary (0: healthy/no cancer, 1: cancer).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value part\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Map sample categories to binary values\n",
    "    if \"invasive breast cancer\" in value:\n",
    "        return 1\n",
    "    elif \"true healthy\" in value or \"no tumor\" in value:\n",
    "        return 0\n",
    "    elif \"DCIS\" in value or \"LCIS\" in value or \"extra ROI\" in value:\n",
    "        # These are precursor lesions or special cases, not considered invasive cancer\n",
    "        return 0\n",
    "    elif \"positive control\" in value:\n",
    "        # Controls shouldn't be counted as cases\n",
    "        return None\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age data to continuous values.\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value part\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"not applicable\" in value or \"missing\" in value:\n",
    "        return None\n",
    "    \n",
    "    # Age is given in ranges like \"55 - 59\"\n",
    "    if \"-\" in value:\n",
    "        # Extract the range and use the midpoint\n",
    "        try:\n",
    "            parts = value.replace(' ', '').split('-')\n",
    "            lower = int(parts[0])\n",
    "            upper = int(parts[1])\n",
    "            return (lower + upper) / 2\n",
    "        except:\n",
    "            return None\n",
    "    \n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender/sex data to binary (0: female, 1: male).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value part\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"not applicable\" in value or \"missing\" in value:\n",
    "        return None\n",
    "    \n",
    "    if \"female\" in value.lower():\n",
    "        return 0\n",
    "    elif \"male\" in value.lower():\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Conduct initial filtering on the usability of the dataset\n",
    "# trait_row is not None, so trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "# We need to create a DataFrame from the sample characteristics dictionary\n",
    "# The sample characteristics are the values provided in the previous output\n",
    "\n",
    "# Create a dictionary to store the sample characteristics for each row\n",
    "sample_chars = {}\n",
    "for row_idx, values in Sample_Characteristics_Dictionary.items():\n",
    "    sample_chars[row_idx] = values\n",
    "\n",
    "# Convert the dictionary to a DataFrame\n",
    "clinical_data = pd.DataFrame(sample_chars)\n",
    "\n",
    "# Now extract the clinical features\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Preview the selected clinical features\n",
    "preview = preview_df(selected_clinical_df)\n",
    "print(\"Preview of clinical features:\")\n",
    "print(preview)\n",
    "\n",
    "# Save the clinical data to a CSV file\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "print(f\"Clinical data saved to: {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d2aa5260",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ab227b7f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "import json\n",
    "import gzip\n",
    "import re\n",
    "from typing import Callable, Optional\n",
    "\n",
    "# Check what files are available in the cohort directory\n",
    "cohort_files = os.listdir(in_cohort_dir)\n",
    "print(f\"Files in cohort directory: {cohort_files}\")\n",
    "\n",
    "# Function to parse GEO series matrix file\n",
    "def parse_geo_series_matrix(file_path):\n",
    "    with gzip.open(file_path, 'rt') as f:\n",
    "        lines = f.readlines()\n",
    "    \n",
    "    # Extract sample characteristics\n",
    "    characteristics_rows = {}\n",
    "    sample_ids = []\n",
    "    data_start = False\n",
    "    \n",
    "    for i, line in enumerate(lines):\n",
    "        if line.startswith('!Sample_geo_accession'):\n",
    "            sample_ids = line.strip().split('\\t')[1:]\n",
    "        elif line.startswith('!Sample_characteristics_ch1'):\n",
    "            parts = line.strip().split('\\t')\n",
    "            header = parts[0]\n",
    "            values = parts[1:]\n",
    "            if len(values) > 0:\n",
    "                row_idx = len(characteristics_rows)\n",
    "                characteristics_rows[row_idx] = values\n",
    "        elif line.startswith('!series_matrix_table_begin'):\n",
    "            data_start = True\n",
    "            data_start_line = i\n",
    "            break\n",
    "    \n",
    "    # Create clinical dataframe\n",
    "    clinical_df = pd.DataFrame(index=sample_ids)\n",
    "    for row_idx, values in characteristics_rows.items():\n",
    "        clinical_df[f'characteristic_{row_idx}'] = values\n",
    "    \n",
    "    # Check if there's gene expression data\n",
    "    has_gene_data = data_start\n",
    "    \n",
    "    return clinical_df, has_gene_data\n",
    "\n",
    "# Parse the GEO series matrix file\n",
    "series_matrix_path = os.path.join(in_cohort_dir, \"GSE283522_series_matrix.txt.gz\")\n",
    "if os.path.exists(series_matrix_path):\n",
    "    clinical_data, is_gene_available = parse_geo_series_matrix(series_matrix_path)\n",
    "    print(f\"Clinical data shape: {clinical_data.shape}\")\n",
    "    \n",
    "    # Display unique values for each sample characteristic\n",
    "    for i, col in enumerate(clinical_data.columns):\n",
    "        unique_values = clinical_data[col].unique()\n",
    "        print(f\"Row {i}, Column '{col}': {unique_values}\")\n",
    "else:\n",
    "    print(f\"Series matrix file not found: {series_matrix_path}\")\n",
    "    clinical_data = pd.DataFrame()\n",
    "    is_gene_available = False\n",
    "\n",
    "# Identify and process clinical variables\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower()\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary: 1 for breast cancer, 0 for control/normal\n",
    "    if any(term in value for term in ['cancer', 'tumor', 'malignant', 'carcinoma']):\n",
    "        return 1\n",
    "    elif any(term in value for term in ['normal', 'control', 'benign', 'healthy']):\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = str(value)\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Try to extract age as a number\n",
    "    age_match = re.search(r'(\\d+)', value)\n",
    "    if age_match:\n",
    "        return float(age_match.group(1))\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower()\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value in ['female', 'f', 'woman']:\n",
    "        return 0\n",
    "    elif value in ['male', 'm', 'man']:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Initialize row indices as None\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Look through the sample characteristics to find the appropriate rows\n",
    "if not clinical_data.empty:\n",
    "    for i, col in enumerate(clinical_data.columns):\n",
    "        col_values = clinical_data[col].astype(str).str.lower()\n",
    "        \n",
    "        # Check for trait-related information\n",
    "        trait_terms = ['tissue', 'diagnosis', 'sample type', 'status', 'source', 'histology', 'disease']\n",
    "        if any(term in col.lower() for term in trait_terms):\n",
    "            # Check if values indicate cancer/normal distinction\n",
    "            has_trait_terms = any(('cancer' in val or 'tumor' in val or 'normal' in val or \n",
    "                                 'control' in val or 'benign' in val or 'malignant' in val) \n",
    "                                for val in col_values)\n",
    "            # Check if there's more than one unique value\n",
    "            has_multiple_values = len(set([convert_trait(val) for val in col_values if convert_trait(val) is not None])) > 1\n",
    "            \n",
    "            if has_trait_terms and has_multiple_values:\n",
    "                trait_row = i\n",
    "        \n",
    "        # Check for age information\n",
    "        if 'age' in col.lower():\n",
    "            # Check if there's more than one unique value after conversion\n",
    "            ages = [convert_age(val) for val in col_values if convert_age(val) is not None]\n",
    "            if len(ages) > 1 and len(set(ages)) > 1:\n",
    "                age_row = i\n",
    "        \n",
    "        # Check for gender information\n",
    "        if 'gender' in col.lower() or 'sex' in col.lower():\n",
    "            # Check if there's more than one unique value after conversion\n",
    "            genders = [convert_gender(val) for val in col_values if convert_gender(val) is not None]\n",
    "            if len(genders) > 1 and len(set(genders)) > 1:\n",
    "                gender_row = i\n",
    "\n",
    "# Save metadata - initial filtering\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, \n",
    "                             is_gene_available=is_gene_available, \n",
    "                             is_trait_available=is_trait_available)\n",
    "\n",
    "# Extract clinical features if trait data is available\n",
    "if is_trait_available:\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data, \n",
    "        trait=trait, \n",
    "        trait_row=trait_row, \n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age if age_row is not None else None,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender if gender_row is not None else None\n",
    "    )\n",
    "    \n",
    "    # Preview the selected clinical features\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(f\"Preview of selected clinical features: {preview}\")\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to: {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "04bf58c2",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f36f952e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Set gene availability flag\n",
    "is_gene_available = True  # Initially assume gene data is available\n",
    "\n",
    "# First check if the matrix file contains the expected marker\n",
    "found_marker = False\n",
    "try:\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        for line in file:\n",
    "            if \"!series_matrix_table_begin\" in line:\n",
    "                found_marker = True\n",
    "                break\n",
    "    \n",
    "    if found_marker:\n",
    "        print(\"Found the matrix table marker in the file.\")\n",
    "    else:\n",
    "        print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
    "        \n",
    "    # Try to extract gene data from the matrix file\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    \n",
    "    if gene_data.shape[0] == 0:\n",
    "        print(\"Warning: Extracted gene data has 0 rows.\")\n",
    "        is_gene_available = False\n",
    "    else:\n",
    "        print(f\"Gene data shape: {gene_data.shape}\")\n",
    "        # Print the first 20 gene/probe identifiers\n",
    "        print(\"First 20 gene/probe identifiers:\")\n",
    "        print(gene_data.index[:20].tolist())\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    is_gene_available = False\n",
    "    \n",
    "    # Try to diagnose the file format\n",
    "    print(\"Examining file content to diagnose the issue:\")\n",
    "    try:\n",
    "        with gzip.open(matrix_file, 'rt') as file:\n",
    "            for i, line in enumerate(file):\n",
    "                if i < 10:  # Print first 10 lines to diagnose\n",
    "                    print(f\"Line {i}: {line.strip()[:100]}...\")  # Print first 100 chars of each line\n",
    "                else:\n",
    "                    break\n",
    "    except Exception as e2:\n",
    "        print(f\"Error examining file: {e2}\")\n",
    "\n",
    "if not is_gene_available:\n",
    "    print(\"Gene expression data could not be successfully extracted from this dataset.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}