File size: 34,525 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "614727c4",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Anxiety_disorder\"\n",
    "cohort = \"GSE61672\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Anxiety_disorder\"\n",
    "in_cohort_dir = \"../../input/GEO/Anxiety_disorder/GSE61672\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Anxiety_disorder/GSE61672.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Anxiety_disorder/gene_data/GSE61672.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Anxiety_disorder/clinical_data/GSE61672.csv\"\n",
    "json_path = \"../../output/preprocess/Anxiety_disorder/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fd17ee20",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "efc0d9c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "88c3071e",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6f60ae20",
   "metadata": {},
   "outputs": [],
   "source": [
    "I need to analyze the data and implement proper clinical feature extraction for this GEO dataset. Let me write valid Python code to handle this task.\n",
    "\n",
    "```python\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this is gene expression data from blood samples\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# From the sample characteristics dictionary:\n",
    "# - Age data is in key 0\n",
    "# - Sex/Gender data is in key 1\n",
    "# - Anxiety case/control status is in key 4\n",
    "trait_row = 4  # anxiety case/control is in key 4\n",
    "age_row = 0    # age\n",
    "gender_row = 1  # sex\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait value to binary (0 for control, 1 for case)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if value.lower() == \"case\":\n",
    "        return 1\n",
    "    elif value.lower() == \"control\":\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to continuous numeric value\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if value.upper() == \"F\":\n",
    "        return 0\n",
    "    elif value.upper() == \"M\":\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine if trait data is available by checking if trait_row is not None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering and save cohort info\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Create clinical data DataFrame from sample characteristics dictionary\n",
    "    sample_chars = {\n",
    "        0: ['age: 44', 'age: 59', 'age: 39', 'age: 64', 'age: 58', 'age: 45', 'age: 37', 'age: 40', 'age: 57', 'age: 52', 'age: 62', 'age: 55', 'age: 53', 'age: 47', 'age: 48', 'age: 49', 'age: 35', 'age: 46', 'age: 54', 'age: 67', 'age: 51', 'age: 34', 'age: 60', 'age: 41', 'age: 38', 'age: 73', 'age: 28', 'age: 56', 'age: 71', 'age: 50'],\n",
    "        1: ['Sex: F', 'Sex: M', 'body mass index: 25.1', 'body mass index: 31.1', 'body mass index: 29.4', 'body mass index: 27.6', 'body mass index: 24.6', 'body mass index: 28', 'body mass index: 33.9', 'body mass index: 35', 'body mass index: 18.1', 'body mass index: 19.2', 'body mass index: 39.2', 'body mass index: 26.8', 'body mass index: 21.3', 'body mass index: 36.5', 'body mass index: 19.5', 'body mass index: 24.4', 'body mass index: 26.4', 'body mass index: 26.2', 'body mass index: 23.8', 'body mass index: 19.7', 'body mass index: 30.6', 'body mass index: 22.8', 'body mass index: 22.1', 'body mass index: 33.4', 'body mass index: 26.6', 'body mass index: 21.8', 'body mass index: 24.3', 'body mass index: 27'],\n",
    "        2: ['body mass index: 22.2', 'body mass index: 33.1', 'body mass index: 22.4', 'body mass index: 20.6', 'body mass index: 27.5', 'body mass index: 21.9', 'body mass index: 26.1', 'body mass index: 34.8', 'body mass index: 20.8', 'body mass index: 23.3', 'body mass index: 22.7', 'body mass index: 26.4', 'body mass index: 32.5', 'body mass index: 21.6', 'body mass index: 27.6', 'body mass index: 25.7', 'body mass index: 33.3', 'body mass index: 31.6', 'body mass index: 28', 'body mass index: 41.1', 'body mass index: 19.7', 'body mass index: 22.1', 'body mass index: 20.7', 'body mass index: 30.9', 'body mass index: 17.8', 'body mass index: 22.5', 'body mass index: 40.6', 'body mass index: 28.9', 'body mass index: 26', 'body mass index: 22'],\n",
    "        3: ['ethnicity: CAU', 'ethnicity: AFR', 'ethnicity: ASN', 'ethnicity: AMI', 'ethnicity: CAH', 'gad7 score: 6', 'gad7 score: 1', 'gad7 score: 0', 'gad7 score: 2', 'gad7 score: 3', 'gad7 score: 5', 'gad7 score: 4', 'gad7 score: 9', 'gad7 score: 7', 'gad7 score: 8', 'hybridization batch: C', 'gad7 score: .', 'gad7 score: 16', 'gad7 score: 12', 'gad7 score: 11', 'gad7 score: 21', 'gad7 score: 18', 'gad7 score: 14'],\n",
    "        4: ['gad7 score: 2', 'gad7 score: 0', 'gad7 score: 3', 'gad7 score: 7', 'gad7 score: 4', 'gad7 score: 9', 'gad7 score: 1', 'gad7 score: 10', 'gad7 score: 5', 'gad7 score: 17', 'gad7 score: 6', 'gad7 score: 8', 'gad7 score: 12', 'gad7 score: 11', 'gad7 score: 14', 'gad7 score: .', 'hybridization batch: Z', 'gad7 score: 18', 'hybridization batch: O', 'gad7 score: 13', 'gad7 score: 15', 'gad7 score: 20', 'gad7 score: 21', 'gad7 score: 19', 'anxiety case/control: case', 'anxiety case/control: control', 'hybridization batch\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d5a6fe94",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dd14e294",
   "metadata": {},
   "outputs": [],
   "source": [
    "I understand I need to fix the code to properly analyze the GEO series matrix file and extract clinical data.\n",
    "\n",
    "```python\n",
    "# Let's analyze the dataset to extract clinical features\n",
    "import os\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import json\n",
    "import gzip\n",
    "import re\n",
    "from typing import Callable, Optional, Dict, Any, List, Union\n",
    "\n",
    "# Let's check files in the cohort directory\n",
    "files_in_cohort = os.listdir(in_cohort_dir)\n",
    "print(f\"Files in cohort directory: {files_in_cohort}\")\n",
    "\n",
    "# Initialize variables\n",
    "is_gene_available = False\n",
    "is_trait_available = False\n",
    "clinical_data = None\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Parse the GEO series matrix file which contains both gene expression and clinical data\n",
    "matrix_file = os.path.join(in_cohort_dir, \"GSE61672_series_matrix.txt.gz\")\n",
    "if os.path.exists(matrix_file):\n",
    "    # Read the gzipped file line by line to extract sample characteristics\n",
    "    characteristics_dict = {}\n",
    "    sample_ids = []\n",
    "    \n",
    "    try:\n",
    "        with gzip.open(matrix_file, 'rt') as f:\n",
    "            in_header_section = True\n",
    "            row_idx = 0\n",
    "            \n",
    "            for line in f:\n",
    "                line = line.strip()\n",
    "                \n",
    "                # Check if we've reached the gene expression data\n",
    "                if line.startswith(\"!series_matrix_table_begin\"):\n",
    "                    is_gene_available = True\n",
    "                    in_header_section = False\n",
    "                    continue\n",
    "                \n",
    "                if in_header_section and line.startswith(\"!Sample_\"):\n",
    "                    parts = line.split('\\t')\n",
    "                    header = parts[0]\n",
    "                    values = parts[1:]\n",
    "                    \n",
    "                    # Get sample IDs once\n",
    "                    if header == \"!Sample_geo_accession\":\n",
    "                        sample_ids = [v.strip('\"') for v in values]\n",
    "                    \n",
    "                    # Store characteristics\n",
    "                    if header == \"!Sample_characteristics_ch1\":\n",
    "                        # This might have multiple rows for different characteristics\n",
    "                        if \"!Sample_characteristics_ch1\" not in characteristics_dict:\n",
    "                            characteristics_dict[\"!Sample_characteristics_ch1\"] = []\n",
    "                        characteristics_dict[\"!Sample_characteristics_ch1\"].append(values)\n",
    "                        row_idx += 1\n",
    "                    else:\n",
    "                        characteristics_dict[header] = values\n",
    "            \n",
    "            # Process characteristics to find trait, age, and gender\n",
    "            if \"!Sample_characteristics_ch1\" in characteristics_dict:\n",
    "                # Create DataFrame from characteristics\n",
    "                clinical_rows = []\n",
    "                clinical_row_names = []\n",
    "                \n",
    "                # Process each characteristics row\n",
    "                for i, chars_row in enumerate(characteristics_dict[\"!Sample_characteristics_ch1\"]):\n",
    "                    # Extract the characteristic name and create a dictionary for the row\n",
    "                    row_data = {}\n",
    "                    char_name = None\n",
    "                    \n",
    "                    # Get first value to extract characteristic name\n",
    "                    if chars_row and chars_row[0]:\n",
    "                        first_value = chars_row[0].strip('\"')\n",
    "                        if \":\" in first_value:\n",
    "                            char_name = first_value.split(':', 1)[0].strip()\n",
    "                    \n",
    "                    # Skip if no name could be extracted\n",
    "                    if not char_name:\n",
    "                        continue\n",
    "                    \n",
    "                    # Process all values in the row\n",
    "                    for j, value in enumerate(chars_row):\n",
    "                        value = value.strip('\"')\n",
    "                        # Skip empty values\n",
    "                        if not value:\n",
    "                            continue\n",
    "                        \n",
    "                        # Extract value after colon if present\n",
    "                        if \":\" in value:\n",
    "                            value = value.split(':', 1)[1].strip()\n",
    "                        \n",
    "                        row_data[sample_ids[j] if j < len(sample_ids) else f\"Sample_{j}\"] = value\n",
    "                    \n",
    "                    # Add row to data\n",
    "                    if row_data:\n",
    "                        clinical_rows.append(row_data)\n",
    "                        clinical_row_names.append(char_name)\n",
    "                \n",
    "                # Create DataFrame from the rows\n",
    "                if clinical_rows:\n",
    "                    clinical_data = pd.DataFrame(clinical_rows, index=clinical_row_names)\n",
    "                    \n",
    "                    # Print sample characteristics to identify trait, age, and gender rows\n",
    "                    print(\"Clinical data rows:\")\n",
    "                    for i, row_name in enumerate(clinical_data.index):\n",
    "                        print(f\"Row {i}, Name: {row_name}\")\n",
    "                        unique_values = clinical_data.iloc[i].unique()\n",
    "                        print(f\"Unique values: {unique_values[:5]}{'...' if len(unique_values) > 5 else ''}\")\n",
    "                        print()\n",
    "                        \n",
    "                    # Look for trait information (anxiety disorder)\n",
    "                    for i, row_name in enumerate(clinical_data.index):\n",
    "                        row_name_lower = row_name.lower()\n",
    "                        if 'disease' in row_name_lower or 'diagnosis' in row_name_lower or 'condition' in row_name_lower or 'status' in row_name_lower or 'anxiety' in row_name_lower:\n",
    "                            unique_vals = clinical_data.iloc[i].unique()\n",
    "                            # Check if values suggest anxiety disorder vs control\n",
    "                            has_trait_info = any(('anxiety' in str(val).lower() or 'control' in str(val).lower() or \n",
    "                                                'patient' in str(val).lower() or 'healthy' in str(val).lower() or\n",
    "                                                'ptsd' in str(val).lower() or 'disorder' in str(val).lower()) \n",
    "                                                for val in unique_vals)\n",
    "                            if has_trait_info and len(unique_vals) > 1:  # Ensure there's more than one value\n",
    "                                trait_row = i\n",
    "                                break\n",
    "                    \n",
    "                    # Look for age information\n",
    "                    for i, row_name in enumerate(clinical_data.index):\n",
    "                        row_name_lower = row_name.lower()\n",
    "                        if 'age' in row_name_lower:\n",
    "                            unique_vals = clinical_data.iloc[i].unique()\n",
    "                            if len(unique_vals) > 1:  # Ensure there's more than one value\n",
    "                                age_row = i\n",
    "                                break\n",
    "                    \n",
    "                    # Look for gender information\n",
    "                    for i, row_name in enumerate(clinical_data.index):\n",
    "                        row_name_lower = row_name.lower()\n",
    "                        if 'gender' in row_name_lower or 'sex' in row_name_lower:\n",
    "                            unique_vals = clinical_data.iloc[i].unique()\n",
    "                            if len(unique_vals) > 1:  # Ensure there's more than one value\n",
    "                                gender_row = i\n",
    "                                break\n",
    "                    \n",
    "                    print(f\"Identified trait_row: {trait_row}\")\n",
    "                    print(f\"Identified age_row: {age_row}\")\n",
    "                    print(f\"Identified gender_row: {gender_row}\")\n",
    "                \n",
    "    except Exception as e:\n",
    "        print(f\"Error reading matrix file: {e}\")\n",
    "        import traceback\n",
    "        traceback.print_exc()\n",
    "else:\n",
    "    print(\"Series matrix file not found.\")\n",
    "\n",
    "# Define conversion functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait values to binary (0 for control, 1 for case)\"\"\"\n",
    "    if pd.isna(value) or value is None or value == '':\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower()\n",
    "    \n",
    "    # Map to binary values\n",
    "    if 'control' in value or 'healthy' in value or 'normal' in value:\n",
    "        return 0\n",
    "    elif 'patient' in value or 'anxiety' in value or 'disorder' in value or 'case' in value or 'ptsd' in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to numeric\"\"\"\n",
    "    if pd.isna(value) or value is None or value == '':\n",
    "        return None\n",
    "    \n",
    "    # Try to extract numeric value\n",
    "    try:\n",
    "        # Extract just digits and decimal points\n",
    "        numbers = re.findall(r'\\d+\\.?\\d*', str(value))\n",
    "        if numbers:\n",
    "            return float(numbers[0])\n",
    "        else:\n",
    "            return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "68c8e933",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b08ac106",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract the gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "print(\"\\nFirst 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# 4. Print the dimensions of the gene expression data\n",
    "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c1daf6d4",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "262754cb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# These identifiers are Illumina probe IDs (ILMN_xxxxxxx format)\n",
    "# They are not human gene symbols and will require mapping to proper gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "be897ed6",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6a7209e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "65062464",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6acf48b1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the columns for probe IDs and gene symbols in gene_annotation\n",
    "# From the preview, we see:\n",
    "# - 'ID' contains the probe identifiers (e.g., ILMN_1343048) which match our gene expression data\n",
    "# - 'Symbol' contains the gene symbols (e.g., phage_lambda_genome, thrB)\n",
    "\n",
    "# 2. Create a mapping dataframe with probe IDs and gene symbols\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col=\"ID\", gene_col=\"Symbol\")\n",
    "print(f\"Shape of gene mapping dataframe: {gene_mapping.shape}\")\n",
    "print(f\"First 5 rows of gene mapping:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "print(f\"\\nShape of gene-level expression data: {gene_data.shape}\")\n",
    "print(f\"First 5 gene symbols:\")\n",
    "print(gene_data.index[:5])\n",
    "\n",
    "# Normalize gene symbols to ensure consistency\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"\\nShape after normalization: {gene_data.shape}\")\n",
    "print(f\"First 5 normalized gene symbols:\")\n",
    "print(gene_data.index[:5])\n",
    "\n",
    "# Save the gene data to a CSV file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to: {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5597e018",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9cd5cf7a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data (already normalized in step 7)\n",
    "print(\"Gene data already normalized in previous step\")\n",
    "\n",
    "# 2. Extract clinical data\n",
    "# First, get the paths again\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Get background information and clinical data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Print unique values by row to verify indices\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "print(\"Unique values by row (first 5 for each):\")\n",
    "for row_idx, values in sample_characteristics_dict.items():\n",
    "    print(f\"Row {row_idx}: {values[:5]}\")\n",
    "\n",
    "# Based on the sample characteristics dictionary\n",
    "# Row 5 contains the anxiety case/control status\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    if \":\" not in str(value):\n",
    "        return None\n",
    "    \n",
    "    value = str(value).split(\":\", 1)[1].strip().lower()\n",
    "    if \"case\" in value:\n",
    "        return 1\n",
    "    elif \"control\" in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    if \":\" not in str(value):\n",
    "        return None\n",
    "    \n",
    "    value = str(value).split(\":\", 1)[1].strip()\n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    if \":\" not in str(value):\n",
    "        return None\n",
    "    \n",
    "    value = str(value).split(\":\", 1)[1].strip().lower()\n",
    "    if value == \"f\":\n",
    "        return 0\n",
    "    elif value == \"m\":\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Use the correct row indices based on the sample characteristics dict output\n",
    "trait_row = 5  # anxiety case/control in row 5\n",
    "age_row = 0    # age in row 0\n",
    "gender_row = 1  # Sex: F/M in row 1\n",
    "\n",
    "# Extract clinical features\n",
    "print(\"Extracting clinical features...\")\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "print(f\"Clinical data contains trait values: {selected_clinical_df.loc[trait].notna().any()}\")\n",
    "\n",
    "# Save clinical data if it has trait values\n",
    "if selected_clinical_df.loc[trait].notna().any():\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "    # 3. Link clinical and genetic data using previously normalized gene data\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
    "    print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
    "\n",
    "    # 4. Handle missing values\n",
    "    linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
    "    print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "    # 5. Determine if trait and demographic features are biased\n",
    "    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "    # 6. Conduct final quality validation\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=True,\n",
    "        is_biased=is_biased,\n",
    "        df=linked_data,\n",
    "        note=\"Dataset contains human anxiety disorder data with gene expression, age, and gender information.\"\n",
    "    )\n",
    "\n",
    "    # 7. Save linked data if usable\n",
    "    if is_usable:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")\n",
    "else:\n",
    "    print(\"No valid trait data found. Dataset cannot be used for trait association studies.\")\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=True,\n",
    "        df=pd.DataFrame(),\n",
    "        note=\"No valid anxiety disorder trait data found in this dataset.\"\n",
    "    )\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5864b9ff",
   "metadata": {},
   "source": [
    "### Step 9: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "50a1c0ef",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "print(\"Normalizing gene symbols...\")\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "print(f\"First 5 normalized gene symbols: {normalized_gene_data.index[:5].tolist()}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Re-extract clinical data since step 2 identified that trait data is available\n",
    "# First, get the paths again\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Get background information and clinical data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Extract clinical features using the conversion functions defined in step 2\n",
    "def convert_trait(value):\n",
    "    if not value or \":\" not in value:\n",
    "        return None\n",
    "    value = value.split(\":\", 1)[1].strip().lower()\n",
    "    if \"obsessive-compulsive disorder\" in value or \"ocd\" in value:\n",
    "        # OCD is considered an anxiety-related disorder in this study\n",
    "        return 1\n",
    "    elif \"normal control\" in value or \"control\" in value or \"healthy\" in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if not value or \":\" not in value:\n",
    "        return None\n",
    "    value = value.split(\":\", 1)[1].strip()\n",
    "    import re\n",
    "    match = re.search(r'(\\d+)', value)\n",
    "    if match:\n",
    "        return int(match.group(1))\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if not value or \":\" not in value:\n",
    "        return None\n",
    "    value = value.split(\":\", 1)[1].strip().lower()\n",
    "    if \"female\" in value:\n",
    "        return 0\n",
    "    elif \"male\" in value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Using values identified in step 2\n",
    "trait_row = 1  # OCD status\n",
    "age_row = 3    # Age\n",
    "gender_row = 2 # Gender\n",
    "\n",
    "# Extract clinical features\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Save clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Determine if trait and demographic features are biased\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 6. Conduct final quality validation\n",
    "is_trait_available = True  # We confirmed trait data is available in step 2\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains human OCD data, which is relevant to anxiety disorders. Contains gene expression, age, and gender information.\"\n",
    ")\n",
    "\n",
    "# 7. Save linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}