File size: 21,112 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "97b9a348",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:10.911309Z",
     "iopub.status.busy": "2025-03-25T06:32:10.911087Z",
     "iopub.status.idle": "2025-03-25T06:32:11.078444Z",
     "shell.execute_reply": "2025-03-25T06:32:11.078091Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Anxiety_disorder\"\n",
    "cohort = \"GSE94119\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Anxiety_disorder\"\n",
    "in_cohort_dir = \"../../input/GEO/Anxiety_disorder/GSE94119\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Anxiety_disorder/GSE94119.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Anxiety_disorder/gene_data/GSE94119.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Anxiety_disorder/clinical_data/GSE94119.csv\"\n",
    "json_path = \"../../output/preprocess/Anxiety_disorder/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d177aa0c",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "5858111e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:11.079893Z",
     "iopub.status.busy": "2025-03-25T06:32:11.079744Z",
     "iopub.status.idle": "2025-03-25T06:32:11.171697Z",
     "shell.execute_reply": "2025-03-25T06:32:11.171393Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression and response to psychological therapy\"\n",
      "!Series_summary\t\"This study represents the first investigation of genome-wide expression profiles with respect to psychological treatment outcome. Participants (n=102) with panic disorder or specific phobia received exposure-based CBT. Treatment outcome was defined as percentage reduction from baseline in clinician-rated severity of their primary anxiety diagnosis at post-treatment and six month follow-up. Gene expression was determined from whole blood samples at 3 time-points using the Illumina HT-12v4 BeadChip microarray. No changes in gene expression were significantly associated with treatment outcomes when correcting for multiple testing (q<0.05), although a small number of genes showed a suggestive association with treatment outcome (q<0.5, n=20). Study reports suggestive evidence for the role of a small number of genes in treatment outcome. Although preliminary, the findings contribute to a growing body of research suggesting that response to psychological therapies may be associated with changes at a biological level.\"\n",
      "!Series_overall_design\t\"Whole blood RNA was collected from patients (n=102) receiving exposure-based CBT at pre- and post-treatment and at follow-up, for investigation of association with therapy outcome. Includes 9 technical replicates.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['gender: FEMALE', 'gender: MALE'], 1: ['tissue: Blood'], 2: ['timepoint: pre', 'timepoint: post', 'timepoint: follow-up']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6870bcc5",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "24a791d5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:11.172835Z",
     "iopub.status.busy": "2025-03-25T06:32:11.172725Z",
     "iopub.status.idle": "2025-03-25T06:32:11.178179Z",
     "shell.execute_reply": "2025-03-25T06:32:11.177886Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this is a microarray study using Illumina HT-12v4 BeadChip\n",
    "# for gene expression profiling, so gene expression data should be available\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (anxiety disorder):\n",
    "# The data doesn't explicitly state anxiety disorder status in the characteristics dictionary,\n",
    "# but from the background information, we know all participants have either panic disorder or \n",
    "# specific phobia, which are types of anxiety disorders. \n",
    "# But there's no row key that distinguishes between different anxiety disorders or severity.\n",
    "trait_row = None\n",
    "\n",
    "# For age:\n",
    "# There's no age information in the sample characteristics dictionary\n",
    "age_row = None\n",
    "\n",
    "# For gender:\n",
    "# Gender is available at index 0\n",
    "gender_row = 0\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "# Since trait data is not available in a usable form for our analysis\n",
    "def convert_trait(value):\n",
    "    return None\n",
    "\n",
    "# Since age data is not available\n",
    "def convert_age(value):\n",
    "    return None\n",
    "\n",
    "# Convert gender to binary (0 for female, 1 for male)\n",
    "def convert_gender(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        value = value.split(':')[1].strip()\n",
    "    \n",
    "    if value.upper() == 'FEMALE':\n",
    "        return 0\n",
    "    elif value.upper() == 'MALE':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine if trait data is available (trait_row is not None)\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort info\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is None, this dataset doesn't have the necessary trait data for our analysis,\n",
    "# so we skip the clinical feature extraction step\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3a1009c9",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ba2fe0ec",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:11.179217Z",
     "iopub.status.busy": "2025-03-25T06:32:11.179111Z",
     "iopub.status.idle": "2025-03-25T06:32:11.352214Z",
     "shell.execute_reply": "2025-03-25T06:32:11.351740Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651228', 'ILMN_1651254',\n",
      "       'ILMN_1651262', 'ILMN_1651315', 'ILMN_1651347', 'ILMN_1651378',\n",
      "       'ILMN_1651405', 'ILMN_1651680', 'ILMN_1651692', 'ILMN_1651705',\n",
      "       'ILMN_1651719', 'ILMN_1651735', 'ILMN_1651788', 'ILMN_1651799',\n",
      "       'ILMN_1651826', 'ILMN_1651832', 'ILMN_1651850', 'ILMN_1651886'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene data dimensions: 4381 genes × 315 samples\n"
     ]
    }
   ],
   "source": [
    "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract the gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "print(\"\\nFirst 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# 4. Print the dimensions of the gene expression data\n",
    "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1c35b8ee",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "da1cd796",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:11.353691Z",
     "iopub.status.busy": "2025-03-25T06:32:11.353572Z",
     "iopub.status.idle": "2025-03-25T06:32:11.355482Z",
     "shell.execute_reply": "2025-03-25T06:32:11.355189Z"
    }
   },
   "outputs": [],
   "source": [
    "# Reviewing the gene identifiers\n",
    "\n",
    "# The identifiers starting with \"ILMN_\" are Illumina probe IDs, not direct human gene symbols\n",
    "# These are probe identifiers used in Illumina microarray platforms and need to be mapped to human gene symbols\n",
    "# for proper biological interpretation and cross-platform compatibility\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cdde4ce1",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ebc0e296",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:11.356699Z",
     "iopub.status.busy": "2025-03-25T06:32:11.356594Z",
     "iopub.status.idle": "2025-03-25T06:32:15.013158Z",
     "shell.execute_reply": "2025-03-25T06:32:15.012763Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e8e0dadf",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "b56bc108",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:15.014550Z",
     "iopub.status.busy": "2025-03-25T06:32:15.014425Z",
     "iopub.status.idle": "2025-03-25T06:32:15.142288Z",
     "shell.execute_reply": "2025-03-25T06:32:15.141937Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Gene': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB']}\n",
      "\n",
      "Gene data after mapping preview:\n",
      "Shape: (3270, 315)\n",
      "First 5 gene symbols: ['AARS', 'AATF', 'ABCF1', 'ABHD5', 'ABI1']\n"
     ]
    }
   ],
   "source": [
    "# Identify the columns in the gene annotation dataframe\n",
    "# For the gene identifiers, we need 'ID' column which contains the ILMN_* probe IDs\n",
    "# For gene symbols, we need the 'Symbol' column\n",
    "\n",
    "# 1. Create a gene mapping dataframe with the probe IDs and gene symbols\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
    "\n",
    "# 2. Print a preview of the mapping dataframe to verify\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(gene_mapping))\n",
    "\n",
    "# 3. Apply the gene mapping to convert the probe-level gene expression data to gene-level data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# 4. Print a preview of the gene expression data after mapping\n",
    "print(\"\\nGene data after mapping preview:\")\n",
    "print(f\"Shape: {gene_data.shape}\")\n",
    "print(f\"First 5 gene symbols: {list(gene_data.index[:5])}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6ccaa06f",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "d22caa05",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:15.143700Z",
     "iopub.status.busy": "2025-03-25T06:32:15.143577Z",
     "iopub.status.idle": "2025-03-25T06:32:15.898744Z",
     "shell.execute_reply": "2025-03-25T06:32:15.898403Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data after normalization: shape (3207, 315)\n",
      "First 5 normalized gene symbols: ['AARS1', 'AATF', 'ABCF1', 'ABHD5', 'ABI1']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Anxiety_disorder/gene_data/GSE94119.csv\n",
      "Clinical data saved to ../../output/preprocess/Anxiety_disorder/clinical_data/GSE94119.csv\n",
      "Linked data shape: (315, 3208)\n",
      "Trait data is unavailable in this dataset.\n",
      "Dataset deemed not usable for anxiety disorder association studies due to missing trait measurements.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "try:\n",
    "    # Use the NCBI gene synonym information to normalize gene symbols\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data after normalization: shape {normalized_gene_data.shape}\")\n",
    "    print(f\"First 5 normalized gene symbols: {normalized_gene_data.index[:5].tolist()}\")\n",
    "    \n",
    "    # Save the normalized gene data\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    normalized_gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "    \n",
    "    # Use the normalized gene data for subsequent steps\n",
    "    gene_data_final = normalized_gene_data\n",
    "except Exception as e:\n",
    "    print(f\"Error during normalization: {e}\")\n",
    "    print(\"Using original gene data instead.\")\n",
    "    gene_data_final = gene_data\n",
    "    \n",
    "    # Save the original gene data\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    gene_data_final.to_csv(out_gene_data_file)\n",
    "    print(f\"Original gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Create clinical data with gender information (since trait data is unavailable)\n",
    "if gender_row is not None:\n",
    "    # Create a DataFrame with just gender information\n",
    "    gender_data = get_feature_data(clinical_data, gender_row, 'Gender', convert_gender)\n",
    "    clinical_df = gender_data\n",
    "    \n",
    "    # Save clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # Link clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data_final)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "else:\n",
    "    print(\"No clinical features available to link with gene expression data.\")\n",
    "    # Create a minimal DataFrame with gene expression data\n",
    "    linked_data = gene_data_final.T  # Transpose to have samples as rows\n",
    "\n",
    "# 3. Since trait data is unavailable, we can't perform trait-specific operations\n",
    "# but we can still handle missing values in the gene expression data\n",
    "is_trait_available = False\n",
    "print(\"Trait data is unavailable in this dataset.\")\n",
    "\n",
    "# 4. Since trait data is unavailable, the dataset is not usable for trait association studies\n",
    "is_biased = True  # Not applicable since trait is unavailable\n",
    "\n",
    "# 5. Validate and save cohort info\n",
    "note = \"This dataset contains human anxiety disorder gene expression data, but lacks specific anxiety disorder trait measurements (e.g., severity scores) for association studies.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 6. Don't save linked data as it's not usable for trait association studies\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset deemed not usable for anxiety disorder association studies due to missing trait measurements.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}