File size: 22,215 Bytes
92d2f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "df2a2950",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:40:03.746195Z",
"iopub.status.busy": "2025-03-25T06:40:03.746089Z",
"iopub.status.idle": "2025-03-25T06:40:03.908281Z",
"shell.execute_reply": "2025-03-25T06:40:03.907921Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Asthma\"\n",
"cohort = \"GSE123088\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Asthma\"\n",
"in_cohort_dir = \"../../input/GEO/Asthma/GSE123088\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Asthma/GSE123088.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Asthma/gene_data/GSE123088.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Asthma/clinical_data/GSE123088.csv\"\n",
"json_path = \"../../output/preprocess/Asthma/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "b9d0f24e",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4e4cbfc9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:40:03.909735Z",
"iopub.status.busy": "2025-03-25T06:40:03.909588Z",
"iopub.status.idle": "2025-03-25T06:40:04.197389Z",
"shell.execute_reply": "2025-03-25T06:40:04.197017Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases\"\n",
"!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
"!Series_overall_design\t\"Refer to individual Series\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['cell type: CD4+ T cells'], 1: ['primary diagnosis: ASTHMA', 'primary diagnosis: ATHEROSCLEROSIS', 'primary diagnosis: BREAST_CANCER', 'primary diagnosis: CHRONIC_LYMPHOCYTIC_LEUKEMIA', 'primary diagnosis: CROHN_DISEASE', 'primary diagnosis: ATOPIC_ECZEMA', 'primary diagnosis: HEALTHY_CONTROL', 'primary diagnosis: INFLUENZA', 'primary diagnosis: OBESITY', 'primary diagnosis: PSORIASIS', 'primary diagnosis: SEASONAL_ALLERGIC_RHINITIS', 'primary diagnosis: TYPE_1_DIABETES', 'primary diagnosis: ACUTE_TONSILLITIS', 'primary diagnosis: ULCERATIVE_COLITIS', 'primary diagnosis: Breast cancer', 'primary diagnosis: Control'], 2: ['Sex: Male', 'diagnosis2: ATOPIC_ECZEMA', 'Sex: Female', 'diagnosis2: ATHEROSCLEROSIS', 'diagnosis2: ASTHMA_OBESITY', 'diagnosis2: ASTHMA', 'diagnosis2: ASTMHA_SEASONAL_ALLERGIC_RHINITIS', 'diagnosis2: OBESITY'], 3: ['age: 56', 'Sex: Male', 'age: 20', 'age: 51', 'age: 37', 'age: 61', 'age: 31', 'age: 41', 'age: 80', 'age: 53', 'age: 73', 'age: 60', 'age: 76', 'age: 77', 'age: 74', 'age: 69', 'age: 81', 'age: 70', 'age: 82', 'age: 67', 'age: 78', 'age: 72', 'age: 66', 'age: 36', 'age: 45', 'age: 65', 'age: 48', 'age: 50', 'age: 24', 'age: 42'], 4: [nan, 'age: 63', 'age: 74', 'age: 49', 'age: 60', 'age: 68', 'age: 38', 'age: 16', 'age: 12', 'age: 27']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "d376f47c",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e1c2a70a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:40:04.198653Z",
"iopub.status.busy": "2025-03-25T06:40:04.198528Z",
"iopub.status.idle": "2025-03-25T06:40:04.211174Z",
"shell.execute_reply": "2025-03-25T06:40:04.210857Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of clinical features:\n",
"{0: [1.0, 56.0, 1.0], 1: [0.0, nan, nan], 2: [0.0, 20.0, 0.0], 3: [0.0, 51.0, nan], 4: [0.0, 37.0, nan], 5: [0.0, 61.0, nan], 6: [0.0, 31.0, nan], 7: [0.0, 41.0, nan], 8: [0.0, 80.0, nan], 9: [0.0, 53.0, nan], 10: [0.0, 73.0, nan], 11: [0.0, 60.0, nan], 12: [0.0, 76.0, nan], 13: [0.0, 77.0, nan], 14: [0.0, 74.0, nan], 15: [0.0, 69.0, nan], 16: [nan, 81.0, nan], 17: [nan, 70.0, nan], 18: [nan, 82.0, nan], 19: [nan, 67.0, nan], 20: [nan, 78.0, nan], 21: [nan, 72.0, nan], 22: [nan, 66.0, nan], 23: [nan, 36.0, nan], 24: [nan, 45.0, nan], 25: [nan, 65.0, nan], 26: [nan, 48.0, nan], 27: [nan, 50.0, nan], 28: [nan, 24.0, nan], 29: [nan, 42.0, nan]}\n",
"Clinical data saved to ../../output/preprocess/Asthma/clinical_data/GSE123088.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this appears to be a gene expression dataset from CD4+ T cells\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# For trait (Asthma), row 1 contains 'primary diagnosis' which includes 'ASTHMA'\n",
"trait_row = 1\n",
"\n",
"# For gender, row 2 and 3 contain 'Sex: Male' and 'Sex: Female'\n",
"gender_row = 2 # This row seems to have more gender entries\n",
"\n",
"# For age, row 3 and 4 contain age information\n",
"age_row = 3 # This row seems to have more age entries\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value):\n",
" if not isinstance(value, str):\n",
" return None\n",
" value = value.lower()\n",
" if 'diagnosis' not in value:\n",
" return None\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" if 'asthma' in value.lower():\n",
" return 1\n",
" else:\n",
" return 0\n",
"\n",
"def convert_gender(value):\n",
" if not isinstance(value, str):\n",
" return None\n",
" if 'sex' not in value.lower():\n",
" return None\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip().lower()\n",
" if 'female' in value:\n",
" return 0\n",
" elif 'male' in value:\n",
" return 1\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" if not isinstance(value, str):\n",
" return None\n",
" if 'age' not in value.lower():\n",
" return None\n",
" if ':' in value:\n",
" try:\n",
" age = int(value.split(':', 1)[1].strip())\n",
" return age\n",
" except:\n",
" return None\n",
" return None\n",
"\n",
"# 3. Save Metadata - initial filtering\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Create DataFrame from the sample characteristics dictionary\n",
" sample_characteristics_dict = {0: ['cell type: CD4+ T cells'], \n",
" 1: ['primary diagnosis: ASTHMA', 'primary diagnosis: ATHEROSCLEROSIS', 'primary diagnosis: BREAST_CANCER', \n",
" 'primary diagnosis: CHRONIC_LYMPHOCYTIC_LEUKEMIA', 'primary diagnosis: CROHN_DISEASE', \n",
" 'primary diagnosis: ATOPIC_ECZEMA', 'primary diagnosis: HEALTHY_CONTROL', 'primary diagnosis: INFLUENZA', \n",
" 'primary diagnosis: OBESITY', 'primary diagnosis: PSORIASIS', 'primary diagnosis: SEASONAL_ALLERGIC_RHINITIS', \n",
" 'primary diagnosis: TYPE_1_DIABETES', 'primary diagnosis: ACUTE_TONSILLITIS', \n",
" 'primary diagnosis: ULCERATIVE_COLITIS', 'primary diagnosis: Breast cancer', 'primary diagnosis: Control'], \n",
" 2: ['Sex: Male', 'diagnosis2: ATOPIC_ECZEMA', 'Sex: Female', 'diagnosis2: ATHEROSCLEROSIS', \n",
" 'diagnosis2: ASTHMA_OBESITY', 'diagnosis2: ASTHMA', 'diagnosis2: ASTMHA_SEASONAL_ALLERGIC_RHINITIS', \n",
" 'diagnosis2: OBESITY'], \n",
" 3: ['age: 56', 'Sex: Male', 'age: 20', 'age: 51', 'age: 37', 'age: 61', 'age: 31', 'age: 41', \n",
" 'age: 80', 'age: 53', 'age: 73', 'age: 60', 'age: 76', 'age: 77', 'age: 74', 'age: 69', \n",
" 'age: 81', 'age: 70', 'age: 82', 'age: 67', 'age: 78', 'age: 72', 'age: 66', 'age: 36', \n",
" 'age: 45', 'age: 65', 'age: 48', 'age: 50', 'age: 24', 'age: 42'], \n",
" 4: [float('nan'), 'age: 63', 'age: 74', 'age: 49', 'age: 60', 'age: 68', 'age: 38', 'age: 16', \n",
" 'age: 12', 'age: 27']}\n",
" \n",
" clinical_data = pd.DataFrame.from_dict(sample_characteristics_dict, orient='index')\n",
" \n",
" # Extract clinical features\n",
" clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" preview = preview_df(clinical_features)\n",
" print(\"Preview of clinical features:\")\n",
" print(preview)\n",
" \n",
" # Create directory if it doesn't exist and save the clinical features to a CSV file\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_features.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "e6cb6e04",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b95d920d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:40:04.212191Z",
"iopub.status.busy": "2025-03-25T06:40:04.212083Z",
"iopub.status.idle": "2025-03-25T06:40:04.731481Z",
"shell.execute_reply": "2025-03-25T06:40:04.731084Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Matrix file found: ../../input/GEO/Asthma/GSE123088/GSE123088_series_matrix.txt.gz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape: (24166, 204)\n",
"First 20 gene/probe identifiers:\n",
"Index(['1', '2', '3', '9', '10', '12', '13', '14', '15', '16', '18', '19',\n",
" '20', '21', '22', '23', '24', '25', '26', '27'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "c6be56df",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "77f1652d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:40:04.732834Z",
"iopub.status.busy": "2025-03-25T06:40:04.732709Z",
"iopub.status.idle": "2025-03-25T06:40:04.734675Z",
"shell.execute_reply": "2025-03-25T06:40:04.734391Z"
}
},
"outputs": [],
"source": [
"# The identifiers shown are not standard human gene symbols\n",
"# They appear to be numeric indices or probe IDs that would need mapping to actual gene symbols\n",
"# Standard human gene symbols would typically be formatted like BRCA1, TP53, etc.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "f98ba288",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0abd3538",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:40:04.735822Z",
"iopub.status.busy": "2025-03-25T06:40:04.735716Z",
"iopub.status.idle": "2025-03-25T06:40:11.917849Z",
"shell.execute_reply": "2025-03-25T06:40:11.917454Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Platform title found: Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 (Entrez Gene ID version)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation preview:\n",
"{'ID': ['1', '2', '3', '9', '10', '12', '13', '14', '15', '16'], 'ENTREZ_GENE_ID': ['1', '2', '3', '9', '10', '12', '13', '14', '15', '16'], 'SPOT_ID': [1.0, 2.0, 3.0, 9.0, 10.0, 12.0, 13.0, 14.0, 15.0, 16.0]}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# Check if there are any platforms defined in the SOFT file that might contain annotation data\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" soft_content = f.read()\n",
"\n",
"# Look for platform sections in the SOFT file\n",
"platform_sections = re.findall(r'^!Platform_title\\s*=\\s*(.+)$', soft_content, re.MULTILINE)\n",
"if platform_sections:\n",
" print(f\"Platform title found: {platform_sections[0]}\")\n",
"\n",
"# Try to extract more annotation data by reading directly from the SOFT file\n",
"# Look for lines that might contain gene symbol mappings\n",
"symbol_pattern = re.compile(r'ID_REF\\s+Symbol|ID\\s+Gene Symbol', re.IGNORECASE)\n",
"annotation_lines = []\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" for line in f:\n",
" if symbol_pattern.search(line):\n",
" annotation_lines.append(line)\n",
" # Collect the next few lines to see the annotation structure\n",
" for _ in range(10):\n",
" annotation_lines.append(next(f, ''))\n",
"\n",
"if annotation_lines:\n",
" print(\"Found potential gene symbol mappings:\")\n",
" for line in annotation_lines:\n",
" print(line.strip())\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"\\nGene annotation preview:\")\n",
"print(preview_df(gene_annotation, n=10))\n",
"\n",
"# If we need an alternative source of mapping, check if there are any other annotation files in the cohort directory\n",
"cohort_files = os.listdir(in_cohort_dir)\n",
"annotation_files = [f for f in cohort_files if 'annotation' in f.lower() or 'platform' in f.lower()]\n",
"if annotation_files:\n",
" print(\"\\nAdditional annotation files found in the cohort directory:\")\n",
" for file in annotation_files:\n",
" print(file)\n"
]
},
{
"cell_type": "markdown",
"id": "5f50054b",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "43665388",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:40:11.919215Z",
"iopub.status.busy": "2025-03-25T06:40:11.919092Z",
"iopub.status.idle": "2025-03-25T06:40:20.377129Z",
"shell.execute_reply": "2025-03-25T06:40:20.376780Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using 'ID' to map to 'ENTREZ_GENE_ID'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mapping data shape: (4740924, 2)\n",
"First few rows of mapping data:\n",
" ID Gene\n",
"0 1 1\n",
"1 2 2\n",
"2 3 3\n",
"3 9 9\n",
"4 10 10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mapped gene expression data shape: (0, 204)\n",
"First few rows of gene expression data:\n",
"Empty DataFrame\n",
"Columns: [GSM3494884, GSM3494885, GSM3494886, GSM3494887, GSM3494888, GSM3494889, GSM3494890, GSM3494891, GSM3494892, GSM3494893, GSM3494894, GSM3494895, GSM3494896, GSM3494897, GSM3494898, GSM3494899, GSM3494900, GSM3494901, GSM3494902, GSM3494903, GSM3494904, GSM3494905, GSM3494906, GSM3494907, GSM3494908, GSM3494909, GSM3494910, GSM3494911, GSM3494912, GSM3494913, GSM3494914, GSM3494915, GSM3494916, GSM3494917, GSM3494918, GSM3494919, GSM3494920, GSM3494921, GSM3494922, GSM3494923, GSM3494924, GSM3494925, GSM3494926, GSM3494927, GSM3494928, GSM3494929, GSM3494930, GSM3494931, GSM3494932, GSM3494933, GSM3494934, GSM3494935, GSM3494936, GSM3494937, GSM3494938, GSM3494939, GSM3494940, GSM3494941, GSM3494942, GSM3494943, GSM3494944, GSM3494945, GSM3494946, GSM3494947, GSM3494948, GSM3494949, GSM3494950, GSM3494951, GSM3494952, GSM3494953, GSM3494954, GSM3494955, GSM3494956, GSM3494957, GSM3494958, GSM3494959, GSM3494960, GSM3494961, GSM3494962, GSM3494963, GSM3494964, GSM3494965, GSM3494966, GSM3494967, GSM3494968, GSM3494969, GSM3494970, GSM3494971, GSM3494972, GSM3494973, GSM3494974, GSM3494975, GSM3494976, GSM3494977, GSM3494978, GSM3494979, GSM3494980, GSM3494981, GSM3494982, GSM3494983, ...]\n",
"Index: []\n",
"\n",
"[0 rows x 204 columns]\n",
"Gene expression data saved to ../../output/preprocess/Asthma/gene_data/GSE123088.csv\n"
]
}
],
"source": [
"# 1. Determine which columns to use for mapping\n",
"# From the previous output, I can see:\n",
"# - The gene expression data uses numeric IDs as identifiers (e.g., '1', '2', '3')\n",
"# - The gene annotation contains columns 'ID' and 'ENTREZ_GENE_ID'\n",
"# - The annotation shows that 'ID' column contains the same identifiers seen in gene expression data\n",
"# - 'ENTREZ_GENE_ID' contains gene IDs that we can use to map to gene symbols\n",
"\n",
"# First check if we have any additional mapping resources\n",
"mapping_id_column = 'ID' # This matches the identifiers in gene_data\n",
"mapping_gene_column = 'ENTREZ_GENE_ID' # We'll use this as the gene identifier\n",
"\n",
"print(f\"Using '{mapping_id_column}' to map to '{mapping_gene_column}'\")\n",
"\n",
"# 2. Extract the mapping data\n",
"mapping_data = get_gene_mapping(gene_annotation, mapping_id_column, mapping_gene_column)\n",
"print(f\"Mapping data shape: {mapping_data.shape}\")\n",
"print(\"First few rows of mapping data:\")\n",
"print(mapping_data.head())\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
"print(f\"Mapped gene expression data shape: {gene_data.shape}\")\n",
"print(\"First few rows of gene expression data:\")\n",
"print(gene_data.head())\n",
"\n",
"# Save the mapped gene expression data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|