File size: 62,432 Bytes
92d2f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ec67c8a4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:46:28.495110Z",
"iopub.status.busy": "2025-03-25T06:46:28.494928Z",
"iopub.status.idle": "2025-03-25T06:46:28.662321Z",
"shell.execute_reply": "2025-03-25T06:46:28.661948Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Atrial_Fibrillation\"\n",
"cohort = \"GSE115574\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Atrial_Fibrillation\"\n",
"in_cohort_dir = \"../../input/GEO/Atrial_Fibrillation/GSE115574\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Atrial_Fibrillation/GSE115574.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Atrial_Fibrillation/gene_data/GSE115574.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Atrial_Fibrillation/clinical_data/GSE115574.csv\"\n",
"json_path = \"../../output/preprocess/Atrial_Fibrillation/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "59a3f705",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1d6455f1",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:46:28.663735Z",
"iopub.status.busy": "2025-03-25T06:46:28.663588Z",
"iopub.status.idle": "2025-03-25T06:46:28.892822Z",
"shell.execute_reply": "2025-03-25T06:46:28.892480Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Gene expression data from human left and right atrial tissues in patients with degenerative MR in SR and AFib.\"\n",
"!Series_summary\t\"We aimed to compare the gene expression profiles of patients with degenerative MR in SR and AFib. We used Affymetrix human gene expression microarrays for each atrium sample. We chose most homogenous groups to compare, cause of the noise overshadows in high-throughput analysis when investigating complex diseases.\"\n",
"!Series_overall_design\t\"Left and right atrial tissue samples were obtained from patients with chronic primary severe MR in permanent AFib (n=15) and sinus rhythm (n=15). Transcriptomic analysis and bioinformatics have been done on all atrial tissues. Independent datasets from GEO were included in the analysis to confirm our findings. Real-time qPCR used to validate microarray results. Atrial tissues investigated via transmission electron microscopy for ultrasutructural changes.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['disease state: atrial fibrillation patient with severe mitral regurgitation', 'disease state: sinus rhythm patient with severe mitral regurgitation'], 1: ['tissue: left atrium - heart', 'tissue: right atrium - heart']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "a39de1b8",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ad05bf78",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:46:28.894510Z",
"iopub.status.busy": "2025-03-25T06:46:28.894397Z",
"iopub.status.idle": "2025-03-25T06:46:28.903502Z",
"shell.execute_reply": "2025-03-25T06:46:28.903199Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of clinical features:\n",
"{'GSM3182680': [1.0], 'GSM3182681': [1.0], 'GSM3182682': [1.0], 'GSM3182683': [1.0], 'GSM3182684': [1.0], 'GSM3182685': [1.0], 'GSM3182686': [1.0], 'GSM3182687': [1.0], 'GSM3182688': [1.0], 'GSM3182689': [1.0], 'GSM3182690': [1.0], 'GSM3182691': [1.0], 'GSM3182692': [1.0], 'GSM3182693': [1.0], 'GSM3182694': [1.0], 'GSM3182695': [1.0], 'GSM3182696': [1.0], 'GSM3182697': [1.0], 'GSM3182698': [1.0], 'GSM3182699': [1.0], 'GSM3182700': [1.0], 'GSM3182701': [1.0], 'GSM3182702': [1.0], 'GSM3182703': [1.0], 'GSM3182704': [1.0], 'GSM3182705': [1.0], 'GSM3182706': [1.0], 'GSM3182707': [1.0], 'GSM3182708': [0.0], 'GSM3182709': [0.0], 'GSM3182710': [0.0], 'GSM3182711': [0.0], 'GSM3182712': [0.0], 'GSM3182713': [0.0], 'GSM3182714': [0.0], 'GSM3182715': [0.0], 'GSM3182716': [0.0], 'GSM3182717': [0.0], 'GSM3182718': [0.0], 'GSM3182719': [0.0], 'GSM3182720': [0.0], 'GSM3182721': [0.0], 'GSM3182722': [0.0], 'GSM3182723': [0.0], 'GSM3182724': [0.0], 'GSM3182725': [0.0], 'GSM3182726': [0.0], 'GSM3182727': [0.0], 'GSM3182728': [0.0], 'GSM3182729': [0.0], 'GSM3182730': [0.0], 'GSM3182731': [0.0], 'GSM3182732': [0.0], 'GSM3182733': [0.0], 'GSM3182734': [0.0], 'GSM3182735': [0.0], 'GSM3182736': [0.0], 'GSM3182737': [0.0], 'GSM3182738': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Atrial_Fibrillation/clinical_data/GSE115574.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on background information, this dataset contains gene expression microarray data\n",
"is_gene_available = True\n",
"\n",
"# 2.1 Data Availability\n",
"# Identify rows in the sample characteristics dictionary for trait, age, and gender\n",
"trait_row = 0 # \"disease state\" contains information about atrial fibrillation status\n",
"age_row = None # Age information is not available in the sample characteristics\n",
"gender_row = None # Gender information is not available in the sample characteristics\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait values to binary (0 for sinus rhythm, 1 for atrial fibrillation)\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract the value after the colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert based on disease state\n",
" if 'atrial fibrillation' in value.lower():\n",
" return 1\n",
" elif 'sinus rhythm' in value.lower():\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age values to continuous numeric format\"\"\"\n",
" # This function is defined for completeness but won't be used since age_row is None\n",
" if value is None:\n",
" return None\n",
" \n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" try:\n",
" return float(value)\n",
" except:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender values to binary (0 for female, 1 for male)\"\"\"\n",
" # This function is defined for completeness but won't be used since gender_row is None\n",
" if value is None:\n",
" return None\n",
" \n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" value = value.lower()\n",
" if 'female' in value or 'f' == value:\n",
" return 0\n",
" elif 'male' in value or 'm' == value:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Conduct initial filtering and save cohort information\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Extract clinical features\n",
" clinical_features_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" preview = preview_df(clinical_features_df)\n",
" print(\"Preview of clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save clinical data to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_features_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "6e5cdc6f",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6cbb7e67",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:46:28.905130Z",
"iopub.status.busy": "2025-03-25T06:46:28.904987Z",
"iopub.status.idle": "2025-03-25T06:46:29.245887Z",
"shell.execute_reply": "2025-03-25T06:46:29.245421Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Matrix file found: ../../input/GEO/Atrial_Fibrillation/GSE115574/GSE115574_series_matrix.txt.gz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape: (54675, 59)\n",
"First 20 gene/probe identifiers:\n",
"Index(['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at', '1294_at',\n",
" '1316_at', '1320_at', '1405_i_at', '1431_at', '1438_at', '1487_at',\n",
" '1494_f_at', '1552256_a_at', '1552257_a_at', '1552258_at', '1552261_at',\n",
" '1552263_at', '1552264_a_at', '1552266_at'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "294b94f2",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c510ba97",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:46:29.247701Z",
"iopub.status.busy": "2025-03-25T06:46:29.247548Z",
"iopub.status.idle": "2025-03-25T06:46:29.249699Z",
"shell.execute_reply": "2025-03-25T06:46:29.249410Z"
}
},
"outputs": [],
"source": [
"# Examining gene identifiers\n",
"# These identifiers (like '1007_s_at', '1053_at') are Affymetrix probe IDs from a microarray\n",
"# They are not standard human gene symbols and will require mapping to official gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "fa73376b",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4fcc6945",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:46:29.251339Z",
"iopub.status.busy": "2025-03-25T06:46:29.251228Z",
"iopub.status.idle": "2025-03-25T06:46:49.143078Z",
"shell.execute_reply": "2025-03-25T06:46:49.142677Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation preview:\n",
"Columns in gene annotation: ['ID', 'GB_ACC', 'SPOT_ID', 'Species Scientific Name', 'Annotation Date', 'Sequence Type', 'Sequence Source', 'Target Description', 'Representative Public ID', 'Gene Title', 'Gene Symbol', 'ENTREZ_GENE_ID', 'RefSeq Transcript ID', 'Gene Ontology Biological Process', 'Gene Ontology Cellular Component', 'Gene Ontology Molecular Function']\n",
"{'ID': ['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409 /// XM_006715073'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype', '0001655 // urogenital system development // inferred from sequence or structural similarity /// 0001656 // metanephros development // inferred from electronic annotation /// 0001658 // branching involved in ureteric bud morphogenesis // inferred from expression pattern /// 0001822 // kidney development // inferred from expression pattern /// 0001823 // mesonephros development // inferred from sequence or structural similarity /// 0003337 // mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from expression pattern /// 0006351 // transcription, DNA-templated // inferred from direct assay /// 0006355 // regulation of transcription, DNA-templated // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007417 // central nervous system development // inferred from expression pattern /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from expression pattern /// 0030878 // thyroid gland development // inferred from mutant phenotype /// 0038194 // thyroid-stimulating hormone signaling pathway // traceable author statement /// 0039003 // pronephric field specification // inferred from sequence or structural similarity /// 0042472 // inner ear morphogenesis // inferred from sequence or structural similarity /// 0042981 // regulation of apoptotic process // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-templated // inferred from direct assay /// 0045893 // positive regulation of transcription, DNA-templated // inferred from sequence or structural similarity /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay /// 0048793 // pronephros development // inferred from sequence or structural similarity /// 0071371 // cellular response to gonadotropin stimulus // inferred from direct assay /// 0071599 // otic vesicle development // inferred from expression pattern /// 0072050 // S-shaped body morphogenesis // inferred from electronic annotation /// 0072073 // kidney epithelium development // inferred from electronic annotation /// 0072108 // positive regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from sequence or structural similarity /// 0072164 // mesonephric tubule development // inferred from electronic annotation /// 0072207 // metanephric epithelium development // inferred from expression pattern /// 0072221 // metanephric distal convoluted tubule development // inferred from sequence or structural similarity /// 0072278 // metanephric comma-shaped body morphogenesis // inferred from expression pattern /// 0072284 // metanephric S-shaped body morphogenesis // inferred from expression pattern /// 0072289 // metanephric nephron tubule formation // inferred from sequence or structural similarity /// 0072305 // negative regulation of mesenchymal cell apoptotic process involved in metanephric nephron morphogenesis // inferred from sequence or structural similarity /// 0072307 // regulation of metanephric nephron tubule epithelial cell differentiation // inferred from sequence or structural similarity /// 0090190 // positive regulation of branching involved in ureteric bud morphogenesis // inferred from sequence or structural similarity /// 1900212 // negative regulation of mesenchymal cell apoptotic process involved in metanephros development // inferred from sequence or structural similarity /// 1900215 // negative regulation of apoptotic process involved in metanephric collecting duct development // inferred from sequence or structural similarity /// 1900218 // negative regulation of apoptotic process involved in metanephric nephron tubule development // inferred from sequence or structural similarity /// 2000594 // positive regulation of metanephric DCT cell differentiation // inferred from sequence or structural similarity /// 2000611 // positive regulation of thyroid hormone generation // inferred from mutant phenotype /// 2000612 // regulation of thyroid-stimulating hormone secretion // inferred from mutant phenotype', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007602 // phototransduction // inferred from electronic annotation /// 0007603 // phototransduction, visible light // traceable author statement /// 0016056 // rhodopsin mediated signaling pathway // traceable author statement /// 0022400 // regulation of rhodopsin mediated signaling pathway // traceable author statement /// 0030828 // positive regulation of cGMP biosynthetic process // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0031284 // positive regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay', '0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005730 // nucleolus // inferred from direct assay', '0001750 // photoreceptor outer segment // inferred from electronic annotation /// 0001917 // photoreceptor inner segment // inferred from electronic annotation /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0097381 // photoreceptor disc membrane // traceable author statement'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay', '0000979 // RNA polymerase II core promoter sequence-specific DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from mutant phenotype /// 0003700 // sequence-specific DNA binding transcription factor activity // inferred from direct assay /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0044212 // transcription regulatory region DNA binding // inferred from direct assay', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation /// 0046872 // metal ion binding // inferred from electronic annotation']}\n",
"\n",
"Analyzing SPOT_ID.1 column for gene symbols:\n",
"\n",
"Gene data ID prefix: 1007\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Column 'ID' contains values matching gene data ID pattern\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Column 'GB_ACC' contains values matching gene data ID pattern\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Column 'Target Description' contains values matching gene data ID pattern\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Column 'Representative Public ID' contains values matching gene data ID pattern\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Column 'Gene Title' contains values matching gene data ID pattern\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Column 'Gene Symbol' contains values matching gene data ID pattern\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Column 'ENTREZ_GENE_ID' contains values matching gene data ID pattern\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Column 'RefSeq Transcript ID' contains values matching gene data ID pattern\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Column 'Gene Ontology Biological Process' contains values matching gene data ID pattern\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Checking for columns containing transcript or gene related terms:\n",
"Column 'Species Scientific Name' may contain gene-related information\n",
"Sample values: ['Homo sapiens', 'Homo sapiens', 'Homo sapiens']\n",
"Column 'Target Description' may contain gene-related information\n",
"Sample values: ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\"]\n",
"Column 'Gene Title' may contain gene-related information\n",
"Sample values: ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\"]\n",
"Column 'Gene Symbol' may contain gene-related information\n",
"Sample values: ['DDR1 /// MIR4640', 'RFC2', 'HSPA6']\n",
"Column 'ENTREZ_GENE_ID' may contain gene-related information\n",
"Sample values: ['780 /// 100616237', '5982', '3310']\n",
"Column 'RefSeq Transcript ID' may contain gene-related information\n",
"Sample values: ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155']\n",
"Column 'Gene Ontology Biological Process' may contain gene-related information\n",
"Sample values: ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype']\n",
"Column 'Gene Ontology Cellular Component' may contain gene-related information\n",
"Sample values: ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay']\n",
"Column 'Gene Ontology Molecular Function' may contain gene-related information\n",
"Sample values: ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay']\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
"print(\"\\nGene annotation preview:\")\n",
"print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
"print(preview_df(gene_annotation, n=5))\n",
"\n",
"# Check for gene information in the SPOT_ID.1 column which appears to contain gene names\n",
"print(\"\\nAnalyzing SPOT_ID.1 column for gene symbols:\")\n",
"if 'SPOT_ID.1' in gene_annotation.columns:\n",
" # Extract a few sample values\n",
" sample_values = gene_annotation['SPOT_ID.1'].head(3).tolist()\n",
" for i, value in enumerate(sample_values):\n",
" print(f\"Sample {i+1} excerpt: {value[:200]}...\") # Print first 200 chars\n",
" # Test the extract_human_gene_symbols function on these values\n",
" symbols = extract_human_gene_symbols(value)\n",
" print(f\" Extracted gene symbols: {symbols}\")\n",
"\n",
"# Try to find the probe IDs in the gene annotation\n",
"gene_data_id_prefix = gene_data.index[0].split('_')[0] # Get prefix of first gene ID\n",
"print(f\"\\nGene data ID prefix: {gene_data_id_prefix}\")\n",
"\n",
"# Look for columns that might match the gene data IDs\n",
"for col in gene_annotation.columns:\n",
" if gene_annotation[col].astype(str).str.contains(gene_data_id_prefix).any():\n",
" print(f\"Column '{col}' contains values matching gene data ID pattern\")\n",
"\n",
"# Check if there's any column that might contain transcript or gene IDs\n",
"print(\"\\nChecking for columns containing transcript or gene related terms:\")\n",
"for col in gene_annotation.columns:\n",
" if any(term in col.upper() for term in ['GENE', 'TRANSCRIPT', 'SYMBOL', 'NAME', 'DESCRIPTION']):\n",
" print(f\"Column '{col}' may contain gene-related information\")\n",
" # Show sample values\n",
" print(f\"Sample values: {gene_annotation[col].head(3).tolist()}\")\n"
]
},
{
"cell_type": "markdown",
"id": "09af1c39",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6d726b15",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:46:49.144780Z",
"iopub.status.busy": "2025-03-25T06:46:49.144657Z",
"iopub.status.idle": "2025-03-25T06:46:50.576238Z",
"shell.execute_reply": "2025-03-25T06:46:50.575840Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping shape: (45782, 2)\n",
"First few rows of gene mapping:\n",
" ID Gene\n",
"0 1007_s_at DDR1 /// MIR4640\n",
"1 1053_at RFC2\n",
"2 117_at HSPA6\n",
"3 121_at PAX8\n",
"4 1255_g_at GUCA1A\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mapped gene expression data shape: (21278, 59)\n",
"First few rows of gene expression data:\n",
" GSM3182680 GSM3182681 GSM3182682 GSM3182683 GSM3182684 \\\n",
"Gene \n",
"A1BG 4.926930 4.932586 4.606200 5.171341 4.944955 \n",
"A1BG-AS1 3.103542 3.398962 3.103393 3.291102 3.197841 \n",
"A1CF 5.365683 5.590272 5.579943 5.255341 5.753891 \n",
"A2M 13.884166 13.669718 13.626048 13.419765 13.931109 \n",
"A2M-AS1 6.634899 6.839370 5.564249 6.530572 6.551003 \n",
"\n",
" GSM3182685 GSM3182686 GSM3182687 GSM3182688 GSM3182689 ... \\\n",
"Gene ... \n",
"A1BG 5.105716 4.501734 4.363352 5.128749 4.810223 ... \n",
"A1BG-AS1 3.411080 3.318383 3.211218 2.799630 3.149896 ... \n",
"A1CF 5.480124 5.600056 5.636956 5.567145 5.652957 ... \n",
"A2M 13.828675 14.227798 13.820529 13.449504 14.066869 ... \n",
"A2M-AS1 7.078142 4.966767 5.812675 6.013761 5.969752 ... \n",
"\n",
" GSM3182729 GSM3182730 GSM3182731 GSM3182732 GSM3182733 \\\n",
"Gene \n",
"A1BG 5.413715 4.836081 5.349848 3.971030 4.338445 \n",
"A1BG-AS1 3.149607 3.272838 3.022402 3.250754 2.803070 \n",
"A1CF 5.673852 5.841600 5.891577 6.008932 5.513088 \n",
"A2M 13.691113 14.044928 13.646026 13.851789 13.439451 \n",
"A2M-AS1 6.391530 5.778477 6.581023 6.193336 7.043427 \n",
"\n",
" GSM3182734 GSM3182735 GSM3182736 GSM3182737 GSM3182738 \n",
"Gene \n",
"A1BG 4.893802 4.929770 4.860276 4.893635 4.847173 \n",
"A1BG-AS1 3.469045 3.163651 3.315003 3.172587 3.364560 \n",
"A1CF 5.969260 6.140460 5.483582 5.513456 5.666486 \n",
"A2M 13.602446 13.764633 13.999652 13.589440 13.528970 \n",
"A2M-AS1 6.588971 6.761819 6.246570 6.634176 6.529994 \n",
"\n",
"[5 rows x 59 columns]\n",
"Number of genes after mapping: 21278\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Atrial_Fibrillation/gene_data/GSE115574.csv\n"
]
}
],
"source": [
"# 1. Determine the columns for gene identifiers and gene symbols\n",
"# From the output, we can see that 'ID' column in gene_annotation contains the same identifiers as in gene_data\n",
"# The 'Gene Symbol' column contains the gene symbols\n",
"\n",
"# 2. Get gene mapping dataframe\n",
"gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')\n",
"print(f\"Gene mapping shape: {gene_mapping.shape}\")\n",
"print(\"First few rows of gene mapping:\")\n",
"print(gene_mapping.head())\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"print(f\"Mapped gene expression data shape: {gene_data.shape}\")\n",
"print(\"First few rows of gene expression data:\")\n",
"print(gene_data.head())\n",
"\n",
"# Preview the number of genes found\n",
"print(f\"Number of genes after mapping: {len(gene_data)}\")\n",
"\n",
"# Save the gene expression data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "2a4ac259",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "b94d0484",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:46:50.578108Z",
"iopub.status.busy": "2025-03-25T06:46:50.577945Z",
"iopub.status.idle": "2025-03-25T06:47:01.757552Z",
"shell.execute_reply": "2025-03-25T06:47:01.757157Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape before normalization: (21278, 59)\n",
"Gene data shape after normalization: (19845, 59)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene expression data saved to ../../output/preprocess/Atrial_Fibrillation/gene_data/GSE115574.csv\n",
"Original clinical data preview:\n",
" !Sample_geo_accession \\\n",
"0 !Sample_characteristics_ch1 \n",
"1 !Sample_characteristics_ch1 \n",
"\n",
" GSM3182680 \\\n",
"0 disease state: atrial fibrillation patient wit... \n",
"1 tissue: left atrium - heart \n",
"\n",
" GSM3182681 \\\n",
"0 disease state: atrial fibrillation patient wit... \n",
"1 tissue: right atrium - heart \n",
"\n",
" GSM3182682 \\\n",
"0 disease state: atrial fibrillation patient wit... \n",
"1 tissue: left atrium - heart \n",
"\n",
" GSM3182683 \\\n",
"0 disease state: atrial fibrillation patient wit... \n",
"1 tissue: right atrium - heart \n",
"\n",
" GSM3182684 \\\n",
"0 disease state: atrial fibrillation patient wit... \n",
"1 tissue: left atrium - heart \n",
"\n",
" GSM3182685 \\\n",
"0 disease state: atrial fibrillation patient wit... \n",
"1 tissue: right atrium - heart \n",
"\n",
" GSM3182686 \\\n",
"0 disease state: atrial fibrillation patient wit... \n",
"1 tissue: left atrium - heart \n",
"\n",
" GSM3182687 \\\n",
"0 disease state: atrial fibrillation patient wit... \n",
"1 tissue: right atrium - heart \n",
"\n",
" GSM3182688 ... \\\n",
"0 disease state: atrial fibrillation patient wit... ... \n",
"1 tissue: left atrium - heart ... \n",
"\n",
" GSM3182729 \\\n",
"0 disease state: sinus rhythm patient with sever... \n",
"1 tissue: right atrium - heart \n",
"\n",
" GSM3182730 \\\n",
"0 disease state: sinus rhythm patient with sever... \n",
"1 tissue: left atrium - heart \n",
"\n",
" GSM3182731 \\\n",
"0 disease state: sinus rhythm patient with sever... \n",
"1 tissue: right atrium - heart \n",
"\n",
" GSM3182732 \\\n",
"0 disease state: sinus rhythm patient with sever... \n",
"1 tissue: left atrium - heart \n",
"\n",
" GSM3182733 \\\n",
"0 disease state: sinus rhythm patient with sever... \n",
"1 tissue: right atrium - heart \n",
"\n",
" GSM3182734 \\\n",
"0 disease state: sinus rhythm patient with sever... \n",
"1 tissue: left atrium - heart \n",
"\n",
" GSM3182735 \\\n",
"0 disease state: sinus rhythm patient with sever... \n",
"1 tissue: right atrium - heart \n",
"\n",
" GSM3182736 \\\n",
"0 disease state: sinus rhythm patient with sever... \n",
"1 tissue: left atrium - heart \n",
"\n",
" GSM3182737 \\\n",
"0 disease state: sinus rhythm patient with sever... \n",
"1 tissue: right atrium - heart \n",
"\n",
" GSM3182738 \n",
"0 disease state: sinus rhythm patient with sever... \n",
"1 tissue: right atrium - heart \n",
"\n",
"[2 rows x 60 columns]\n",
"Selected clinical data shape: (1, 59)\n",
"Clinical data preview:\n",
" GSM3182680 GSM3182681 GSM3182682 GSM3182683 \\\n",
"Atrial_Fibrillation 1.0 1.0 1.0 1.0 \n",
"\n",
" GSM3182684 GSM3182685 GSM3182686 GSM3182687 \\\n",
"Atrial_Fibrillation 1.0 1.0 1.0 1.0 \n",
"\n",
" GSM3182688 GSM3182689 ... GSM3182729 GSM3182730 \\\n",
"Atrial_Fibrillation 1.0 1.0 ... 0.0 0.0 \n",
"\n",
" GSM3182731 GSM3182732 GSM3182733 GSM3182734 \\\n",
"Atrial_Fibrillation 0.0 0.0 0.0 0.0 \n",
"\n",
" GSM3182735 GSM3182736 GSM3182737 GSM3182738 \n",
"Atrial_Fibrillation 0.0 0.0 0.0 0.0 \n",
"\n",
"[1 rows x 59 columns]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape before processing: (59, 19846)\n",
"Linked data preview (first 5 rows, 5 columns):\n",
" Atrial_Fibrillation A1BG A1BG-AS1 A1CF A2M\n",
"GSM3182680 1.0 4.926930 3.103542 5.365683 13.884166\n",
"GSM3182681 1.0 4.932586 3.398962 5.590272 13.669718\n",
"GSM3182682 1.0 4.606200 3.103393 5.579943 13.626048\n",
"GSM3182683 1.0 5.171341 3.291102 5.255341 13.419765\n",
"GSM3182684 1.0 4.944955 3.197841 5.753891 13.931109\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (59, 19846)\n",
"For the feature 'Atrial_Fibrillation', the least common label is '1.0' with 28 occurrences. This represents 47.46% of the dataset.\n",
"A new JSON file was created at: ../../output/preprocess/Atrial_Fibrillation/cohort_info.json\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Atrial_Fibrillation/GSE115574.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"# Use normalize_gene_symbols_in_index to standardize gene symbols\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
"\n",
"# Load the actual clinical data from the matrix file that was previously obtained in Step 1\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"# Get preview of clinical data to understand its structure\n",
"print(\"Original clinical data preview:\")\n",
"print(clinical_data.head())\n",
"\n",
"# 2. If we have trait data available, proceed with linking\n",
"if trait_row is not None:\n",
" # Extract clinical features using the original clinical data\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
"\n",
" print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
" print(\"Clinical data preview:\")\n",
" print(selected_clinical_df.head())\n",
"\n",
" # Link the clinical and genetic data\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
" print(f\"Linked data shape before processing: {linked_data.shape}\")\n",
" print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
" print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Empty dataframe\")\n",
"\n",
" # 3. Handle missing values\n",
" try:\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
" except Exception as e:\n",
" print(f\"Error handling missing values: {e}\")\n",
" linked_data = pd.DataFrame() # Create empty dataframe if error occurs\n",
"\n",
" # 4. Check for bias in features\n",
" if not linked_data.empty and linked_data.shape[0] > 0:\n",
" # Check if trait is biased\n",
" trait_type = 'binary' if len(linked_data[trait].unique()) <= 2 else 'continuous'\n",
" if trait_type == \"binary\":\n",
" is_biased = judge_binary_variable_biased(linked_data, trait)\n",
" else:\n",
" is_biased = judge_continuous_variable_biased(linked_data, trait)\n",
" \n",
" # Remove biased demographic features\n",
" if \"Age\" in linked_data.columns:\n",
" age_biased = judge_continuous_variable_biased(linked_data, 'Age')\n",
" if age_biased:\n",
" linked_data = linked_data.drop(columns='Age')\n",
" \n",
" if \"Gender\" in linked_data.columns:\n",
" gender_biased = judge_binary_variable_biased(linked_data, 'Gender')\n",
" if gender_biased:\n",
" linked_data = linked_data.drop(columns='Gender')\n",
" else:\n",
" is_biased = True\n",
" print(\"Cannot check for bias as dataframe is empty or has no rows after missing value handling\")\n",
"\n",
" # 5. Validate and save cohort information\n",
" note = \"\"\n",
" if linked_data.empty or linked_data.shape[0] == 0:\n",
" note = \"Dataset contains gene expression data related to atrial fibrillation after cardiac surgery, but linking clinical and genetic data failed, possibly due to mismatched sample IDs.\"\n",
" else:\n",
" note = \"Dataset contains gene expression data for atrial fibrillation after cardiac surgery, which is relevant to arrhythmia research.\"\n",
" \n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
" )\n",
"\n",
" # 6. Save the linked data if usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"Dataset is not usable for analysis. No linked data file saved.\")\n",
"else:\n",
" # If no trait data available, validate with trait_available=False\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=False,\n",
" is_biased=True, # Set to True since we can't use data without trait\n",
" df=pd.DataFrame(), # Empty DataFrame\n",
" note=\"Dataset contains gene expression data but lacks proper clinical trait information for arrhythmia analysis.\"\n",
" )\n",
" \n",
" print(\"Dataset is not usable for arrhythmia analysis due to lack of clinical trait data. No linked data file saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|