File size: 43,718 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "eabd33f2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:43.647096Z",
     "iopub.status.busy": "2025-03-25T06:53:43.646907Z",
     "iopub.status.idle": "2025-03-25T06:53:43.810888Z",
     "shell.execute_reply": "2025-03-25T06:53:43.810559Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Autoinflammatory_Disorders\"\n",
    "cohort = \"GSE43553\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Autoinflammatory_Disorders\"\n",
    "in_cohort_dir = \"../../input/GEO/Autoinflammatory_Disorders/GSE43553\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Autoinflammatory_Disorders/GSE43553.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Autoinflammatory_Disorders/gene_data/GSE43553.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Autoinflammatory_Disorders/clinical_data/GSE43553.csv\"\n",
    "json_path = \"../../output/preprocess/Autoinflammatory_Disorders/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9a7d9e10",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "2fe463ac",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:43.812255Z",
     "iopub.status.busy": "2025-03-25T06:53:43.812125Z",
     "iopub.status.idle": "2025-03-25T06:53:43.929848Z",
     "shell.execute_reply": "2025-03-25T06:53:43.929551Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Microarray-based gene expression profiling in patients with cryopyrin-associated periodic syndromes defines a disease-related signature and IL-1-responsive transcripts.\"\n",
      "!Series_summary\t\"To analyse gene expression patterns and to define a specific gene expression signature in patients with the severe end of the spectrum of cryopyrin-associated periodic syndromes (CAPS). The molecular consequences of interleukin 1 inhibition were examined by comparing gene expression patterns in 16 CAPS patients before and after treatment with anakinra.\"\n",
      "!Series_summary\t\"Many DEG include transcripts related to the regulation of innate and adaptive immune responses, oxidative stress, cell death, cell adhesion and motility. A set of gene expression-based models comprising the CAPS-specific gene expression signature correctly classified all 17 samples from an independent dataset. This classifier also correctly identified 15 of 16 post-anakinra CAPS samples despite the fact that these CAPS patients were in clinical remission. We identified a gene expression signature that clearly distinguished CAPS patients from controls. A number of DEG were in common with other systemic inflammatory diseases such as systemic onset juvenile idiopathic arthritis. The CAPS-specific gene expression classifiers also suggest incomplete suppression of inflammation at low doses of anakinra.\"\n",
      "!Series_overall_design\t\"We collected peripheral blood mononuclear cells from 23 CAPS patients with active disease and from 14 healthy children. Transcripts that passed stringent filtering criteria (p values ≤ false discovery rate 1%) were considered as differentially expressed genes (DEG). A set of DEG was validated by quantitative reverse transcription PCR and functional studies with primary cells from CAPS patients and healthy controls. We used 17 CAPS and 43 non-CAPS patient samples to create a set of gene expression models that differentiates CAPS patients from controls and from patients with other autoinflammatory conditions.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell type: peripheral blood mononuclear cells'], 1: ['genotype: NLRP3 mutation carrier', 'genotype: NLRP3 mutation negative', 'genotype: healthy adult control', 'genotype: two MVK mutations', 'genotype: MVK mutations', 'genotype: PSTPIP1 mutation carrier', 'genotype: healthy children  control', 'genotype: TNFRSF1A mutation carrier'], 2: ['disease causing mutation: heterozygous for D303N', 'disease causing mutation: mosaic for K355N', 'disease causing mutation: heterozygous for F523C', 'disease causing mutation: heterozygous for G569R', 'disease causing mutation: heterozygous for G326E', 'disease causing mutation: heterozygous for T348M', 'disease causing mutation: heterozygous for V262A', 'disease causing mutation: heterozygous for F443L', 'disease causing mutation: heterozygous for L632F', 'disease causing mutation: not known', 'disease causing mutation: heterozygous for L264F', 'disease causing mutation: heterozygous for R260W', 'disease causing mutation: heterozygous forL353P', 'disease causing mutation: heterozygous for V351L', 'disease causing mutation: heterozygous for A374D', 'disease state: healthy adult control', 'disease causing mutation: V377I/S329R', 'disease causing mutation: V377I/?', 'disease causing mutation: V377I/I268T', 'disease causing mutation: V203A/H380R', 'disease causing mutation: V377I/ex3 del', 'disease causing mutation: V377I /c.421delG', 'disease causing mutation: A230T', 'disease causing mutation: E250Q', 'disease state: healthy children  control', 'disease causing mutation: C52F', 'disease causing mutation: C33G', 'disease causing mutation: H22Y', 'disease causing mutation: T50M', 'disease causing mutation: S74C'], 3: ['disease state: CAPS', nan, 'disease state: other autoinflammatory disease']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "73e182fe",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "64325ed5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:43.931064Z",
     "iopub.status.busy": "2025-03-25T06:53:43.930956Z",
     "iopub.status.idle": "2025-03-25T06:53:43.935769Z",
     "shell.execute_reply": "2025-03-25T06:53:43.935491Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data extraction requires the actual clinical data file, which is not available.\n",
      "Trait information is available (trait_row = 3), but we need the complete clinical dataset.\n",
      "The rest of the preprocessing pipeline will continue without the clinical data extraction step.\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import numpy as np\n",
    "from typing import Dict, Any, Optional, Callable\n",
    "import json\n",
    "import re\n",
    "\n",
    "# 1. Analyzing the availability of gene expression data\n",
    "# Based on the background information, this dataset contains gene expression data from microarray analysis\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Analyzing clinical data availability and defining conversion functions\n",
    "\n",
    "# 2.1 For trait (Autoinflammatory Disorders):\n",
    "# Row 3 contains 'disease state: CAPS', 'disease state: other autoinflammatory disease', etc.\n",
    "trait_row = 3\n",
    "\n",
    "# Function to convert trait values\n",
    "def convert_trait(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon if present\n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary: CAPS (1) vs other conditions (0)\n",
    "    if 'CAPS' in value:\n",
    "        return 1\n",
    "    elif 'other autoinflammatory disease' in value or 'healthy' in value:\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 2.2 For age:\n",
    "# No clear data for age in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "def convert_age(value):\n",
    "    # This function is defined but won't be used since age data is not available\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# 2.3 For gender:\n",
    "# No clear data for gender in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # This function is defined but won't be used since gender data is not available\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    \n",
    "    if value in ['female', 'f']:\n",
    "        return 0\n",
    "    elif value in ['male', 'm']:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save metadata for initial filtering\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (only if trait data is available)\n",
    "if trait_row is not None:\n",
    "    try:\n",
    "        # The sample characteristics dictionary from the previous output just \n",
    "        # provides a summary of unique values, and isn't the actual clinical data.\n",
    "        # Since we don't have the actual clinical data file, we'll skip this step.\n",
    "        print(\"Clinical data extraction requires the actual clinical data file, which is not available.\")\n",
    "        print(\"Trait information is available (trait_row = 3), but we need the complete clinical dataset.\")\n",
    "        print(\"The rest of the preprocessing pipeline will continue without the clinical data extraction step.\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing clinical data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "14d8acf2",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "5fc4cc50",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:43.936888Z",
     "iopub.status.busy": "2025-03-25T06:53:43.936786Z",
     "iopub.status.idle": "2025-03-25T06:53:44.109059Z",
     "shell.execute_reply": "2025-03-25T06:53:44.108700Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at', '1294_at',\n",
      "       '1316_at', '1320_at', '1405_i_at', '1431_at', '1438_at', '1487_at',\n",
      "       '1494_f_at', '1598_g_at', '160020_at', '1729_at', '1773_at', '177_at',\n",
      "       '179_at', '1861_at'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7368d99c",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "be86ec2d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:44.110215Z",
     "iopub.status.busy": "2025-03-25T06:53:44.110108Z",
     "iopub.status.idle": "2025-03-25T06:53:44.111886Z",
     "shell.execute_reply": "2025-03-25T06:53:44.111606Z"
    }
   },
   "outputs": [],
   "source": [
    "# These gene identifiers appear to be Affymetrix probe IDs (e.g., \"1007_s_at\", \"1053_at\"), not standard human gene symbols.\n",
    "# Affymetrix IDs need to be mapped to human gene symbols for biological interpretation.\n",
    "# The format with \"_at\" suffix is characteristic of Affymetrix microarray probe IDs.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7ffe2687",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "539d0d43",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:44.112984Z",
     "iopub.status.busy": "2025-03-25T06:53:44.112884Z",
     "iopub.status.idle": "2025-03-25T06:53:47.235257Z",
     "shell.execute_reply": "2025-03-25T06:53:47.234852Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409 /// XM_006715073'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype', '0001655 // urogenital system development // inferred from sequence or structural similarity /// 0001656 // metanephros development // inferred from electronic annotation /// 0001658 // branching involved in ureteric bud morphogenesis // inferred from expression pattern /// 0001822 // kidney development // inferred from expression pattern /// 0001823 // mesonephros development // inferred from sequence or structural similarity /// 0003337 // mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from expression pattern /// 0006351 // transcription, DNA-templated // inferred from direct assay /// 0006355 // regulation of transcription, DNA-templated // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007417 // central nervous system development // inferred from expression pattern /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from expression pattern /// 0030878 // thyroid gland development // inferred from mutant phenotype /// 0038194 // thyroid-stimulating hormone signaling pathway // traceable author statement /// 0039003 // pronephric field specification // inferred from sequence or structural similarity /// 0042472 // inner ear morphogenesis // inferred from sequence or structural similarity /// 0042981 // regulation of apoptotic process // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-templated // inferred from direct assay /// 0045893 // positive regulation of transcription, DNA-templated // inferred from sequence or structural similarity /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay /// 0048793 // pronephros development // inferred from sequence or structural similarity /// 0071371 // cellular response to gonadotropin stimulus // inferred from direct assay /// 0071599 // otic vesicle development // inferred from expression pattern /// 0072050 // S-shaped body morphogenesis // inferred from electronic annotation /// 0072073 // kidney epithelium development // inferred from electronic annotation /// 0072108 // positive regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from sequence or structural similarity /// 0072164 // mesonephric tubule development // inferred from electronic annotation /// 0072207 // metanephric epithelium development // inferred from expression pattern /// 0072221 // metanephric distal convoluted tubule development // inferred from sequence or structural similarity /// 0072278 // metanephric comma-shaped body morphogenesis // inferred from expression pattern /// 0072284 // metanephric S-shaped body morphogenesis // inferred from expression pattern /// 0072289 // metanephric nephron tubule formation // inferred from sequence or structural similarity /// 0072305 // negative regulation of mesenchymal cell apoptotic process involved in metanephric nephron morphogenesis // inferred from sequence or structural similarity /// 0072307 // regulation of metanephric nephron tubule epithelial cell differentiation // inferred from sequence or structural similarity /// 0090190 // positive regulation of branching involved in ureteric bud morphogenesis // inferred from sequence or structural similarity /// 1900212 // negative regulation of mesenchymal cell apoptotic process involved in metanephros development // inferred from sequence or structural similarity /// 1900215 // negative regulation of apoptotic process involved in metanephric collecting duct development // inferred from sequence or structural similarity /// 1900218 // negative regulation of apoptotic process involved in metanephric nephron tubule development // inferred from sequence or structural similarity /// 2000594 // positive regulation of metanephric DCT cell differentiation // inferred from sequence or structural similarity /// 2000611 // positive regulation of thyroid hormone generation // inferred from mutant phenotype /// 2000612 // regulation of thyroid-stimulating hormone secretion // inferred from mutant phenotype', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007602 // phototransduction // inferred from electronic annotation /// 0007603 // phototransduction, visible light // traceable author statement /// 0016056 // rhodopsin mediated signaling pathway // traceable author statement /// 0022400 // regulation of rhodopsin mediated signaling pathway // traceable author statement /// 0030828 // positive regulation of cGMP biosynthetic process // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0031284 // positive regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay', '0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005730 // nucleolus // inferred from direct assay', '0001750 // photoreceptor outer segment // inferred from electronic annotation /// 0001917 // photoreceptor inner segment // inferred from electronic annotation /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0097381 // photoreceptor disc membrane // traceable author statement'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay', '0000979 // RNA polymerase II core promoter sequence-specific DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from mutant phenotype /// 0003700 // sequence-specific DNA binding transcription factor activity // inferred from direct assay /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0044212 // transcription regulatory region DNA binding // inferred from direct assay', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation /// 0046872 // metal ion binding // inferred from electronic annotation']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "133377ad",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "c8c2ad34",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:47.236696Z",
     "iopub.status.busy": "2025-03-25T06:53:47.236580Z",
     "iopub.status.idle": "2025-03-25T06:53:47.420026Z",
     "shell.execute_reply": "2025-03-25T06:53:47.419639Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping dataframe created with 21225 probe-to-gene mappings\n",
      "Sample of mapping data (first 5 rows):\n",
      "          ID              Gene\n",
      "0  1007_s_at  DDR1 /// MIR4640\n",
      "1    1053_at              RFC2\n",
      "2     117_at             HSPA6\n",
      "3     121_at              PAX8\n",
      "4  1255_g_at            GUCA1A\n",
      "Gene expression data created with 13830 genes and 100 samples\n",
      "First few gene symbols in the processed gene data:\n",
      "Index(['A1CF', 'A2M', 'A4GALT', 'A4GNT', 'AAAS', 'AACS', 'AADAC', 'AAGAB',\n",
      "       'AAK1', 'AAMDC'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the columns in gene_annotation containing probe IDs and gene symbols\n",
    "# 'ID' column stores the same kind of gene identifiers (Affymetrix IDs) as in gene_data\n",
    "# 'Gene Symbol' column stores the corresponding gene symbols\n",
    "probe_col = 'ID'\n",
    "gene_col = 'Gene Symbol'\n",
    "\n",
    "# 2. Get the gene mapping dataframe by extracting these two columns\n",
    "mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_col)\n",
    "print(f\"Gene mapping dataframe created with {len(mapping_df)} probe-to-gene mappings\")\n",
    "print(f\"Sample of mapping data (first 5 rows):\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Gene expression data created with {len(gene_data)} genes and {gene_data.shape[1]} samples\")\n",
    "print(f\"First few gene symbols in the processed gene data:\")\n",
    "print(gene_data.index[:10])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "997c9014",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "a7eff8d8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:47.421331Z",
     "iopub.status.busy": "2025-03-25T06:53:47.421211Z",
     "iopub.status.idle": "2025-03-25T06:53:52.066591Z",
     "shell.execute_reply": "2025-03-25T06:53:52.066210Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original gene count: 13830\n",
      "Normalized gene count: 13542\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Autoinflammatory_Disorders/gene_data/GSE43553.csv\n",
      "Preview of selected clinical features:\n",
      "{'GSM1065191': [1.0], 'GSM1065192': [1.0], 'GSM1065193': [1.0], 'GSM1065194': [1.0], 'GSM1065195': [1.0], 'GSM1065196': [1.0], 'GSM1065197': [1.0], 'GSM1065198': [1.0], 'GSM1065199': [1.0], 'GSM1065200': [1.0], 'GSM1065201': [1.0], 'GSM1065202': [1.0], 'GSM1065203': [1.0], 'GSM1065204': [1.0], 'GSM1065205': [1.0], 'GSM1065206': [1.0], 'GSM1065207': [1.0], 'GSM1065208': [1.0], 'GSM1065209': [1.0], 'GSM1065210': [1.0], 'GSM1065211': [1.0], 'GSM1065212': [1.0], 'GSM1065213': [1.0], 'GSM1065214': [nan], 'GSM1065215': [nan], 'GSM1065216': [nan], 'GSM1065217': [nan], 'GSM1065218': [nan], 'GSM1065219': [nan], 'GSM1065220': [nan], 'GSM1065221': [nan], 'GSM1065222': [nan], 'GSM1065223': [nan], 'GSM1065224': [nan], 'GSM1065225': [nan], 'GSM1065226': [nan], 'GSM1065227': [nan], 'GSM1065228': [nan], 'GSM1065229': [nan], 'GSM1065230': [nan], 'GSM1065231': [nan], 'GSM1065232': [nan], 'GSM1065233': [nan], 'GSM1065234': [0.0], 'GSM1065235': [0.0], 'GSM1065236': [0.0], 'GSM1065237': [0.0], 'GSM1065238': [0.0], 'GSM1065239': [0.0], 'GSM1065240': [0.0], 'GSM1065241': [0.0], 'GSM1065242': [0.0], 'GSM1065243': [0.0], 'GSM1065244': [0.0], 'GSM1065245': [0.0], 'GSM1065246': [0.0], 'GSM1065247': [0.0], 'GSM1065248': [nan], 'GSM1065249': [nan], 'GSM1065250': [nan], 'GSM1065251': [nan], 'GSM1065252': [nan], 'GSM1065253': [nan], 'GSM1065254': [nan], 'GSM1065255': [nan], 'GSM1065256': [nan], 'GSM1065257': [nan], 'GSM1065258': [nan], 'GSM1065259': [nan], 'GSM1065260': [nan], 'GSM1065261': [nan], 'GSM1065262': [0.0], 'GSM1065263': [0.0], 'GSM1065264': [0.0], 'GSM1065265': [0.0], 'GSM1065266': [0.0], 'GSM1065267': [0.0], 'GSM1065268': [0.0], 'GSM1065269': [0.0], 'GSM1065270': [0.0], 'GSM1065271': [0.0], 'GSM1065272': [0.0], 'GSM1065273': [0.0], 'GSM1065274': [0.0], 'GSM1065275': [0.0], 'GSM1065276': [0.0], 'GSM1065277': [0.0], 'GSM1065278': [0.0], 'GSM1065279': [0.0], 'GSM1065280': [0.0], 'GSM1065281': [0.0], 'GSM1065282': [0.0], 'GSM1065283': [0.0], 'GSM1065284': [0.0], 'GSM1065285': [0.0], 'GSM1065286': [0.0], 'GSM1065287': [0.0], 'GSM1065288': [0.0], 'GSM1065289': [0.0], 'GSM1065290': [0.0]}\n",
      "Clinical data saved to ../../output/preprocess/Autoinflammatory_Disorders/clinical_data/GSE43553.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data shape after handling missing values: (66, 13543)\n",
      "For the feature 'Autoinflammatory_Disorders', the least common label is '1.0' with 23 occurrences. This represents 34.85% of the dataset.\n",
      "A new JSON file was created at: ../../output/preprocess/Autoinflammatory_Disorders/cohort_info.json\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Autoinflammatory_Disorders/GSE43553.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "# First, normalize gene symbols using the function from the library\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Original gene count: {len(gene_data)}\")\n",
    "print(f\"Normalized gene count: {len(normalized_gene_data)}\")\n",
    "\n",
    "# Create directory for the gene data file if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "\n",
    "# Save the normalized gene data to a CSV file\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. We need to first load or recreate the selected_clinical_df\n",
    "try:\n",
    "    # Try to load the previously saved clinical data\n",
    "    selected_clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "except:\n",
    "    # If loading fails, recreate the clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "\n",
    "    # Preview the extracted clinical features\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    print(preview)\n",
    "\n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "\n",
    "# Check if linking was successful\n",
    "if len(linked_data) == 0 or trait not in linked_data.columns:\n",
    "    print(\"Linking clinical and genetic data failed - no valid rows or trait column missing\")\n",
    "    # Set is_usable to False and save cohort info\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=True,  # Consider it biased if linking fails\n",
    "        df=pd.DataFrame({trait: [], 'Gender': []}), \n",
    "        note=\"Data linking failed - unable to process gene expression data appropriately.\"\n",
    "    )\n",
    "    print(\"The dataset was determined to be not usable for analysis.\")\n",
    "else:\n",
    "    # 3. Handle missing values in the linked data\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    \n",
    "    print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "    \n",
    "    # 4. Determine whether the trait and demographic features are severely biased\n",
    "    trait_type = 'binary' if len(linked_data[trait].unique()) <= 2 else 'continuous'\n",
    "    if trait_type == 'binary':\n",
    "        if len(linked_data[trait].value_counts()) >= 2:\n",
    "            is_trait_biased = judge_binary_variable_biased(linked_data, trait)\n",
    "        else:\n",
    "            print(f\"Trait '{trait}' has only one unique value, considering it biased.\")\n",
    "            is_trait_biased = True\n",
    "    else:\n",
    "        is_trait_biased = judge_continuous_variable_biased(linked_data, trait)\n",
    "    \n",
    "    # Remove biased demographic features\n",
    "    unbiased_linked_data = linked_data.copy()\n",
    "    if 'Age' in unbiased_linked_data.columns:\n",
    "        age_biased = judge_continuous_variable_biased(unbiased_linked_data, 'Age')\n",
    "        if age_biased:\n",
    "            print(f\"The distribution of the feature \\'Age\\' in this dataset is severely biased.\")\n",
    "            unbiased_linked_data = unbiased_linked_data.drop(columns=['Age'])\n",
    "    \n",
    "    if 'Gender' in unbiased_linked_data.columns:\n",
    "        if len(unbiased_linked_data['Gender'].value_counts()) >= 2:\n",
    "            gender_biased = judge_binary_variable_biased(unbiased_linked_data, 'Gender')\n",
    "            if gender_biased:\n",
    "                print(f\"The distribution of the feature \\'Gender\\' in this dataset is severely biased.\")\n",
    "                unbiased_linked_data = unbiased_linked_data.drop(columns=['Gender'])\n",
    "        else:\n",
    "            print(f\"Gender has only one unique value, considering it biased and removing.\")\n",
    "            unbiased_linked_data = unbiased_linked_data.drop(columns=['Gender'])\n",
    "    \n",
    "    # 5. Conduct quality check and save the cohort information.\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=is_trait_biased, \n",
    "        df=unbiased_linked_data, \n",
    "        note=\"Dataset contains gene expression data from whole blood of systemic juvenile idiopathic arthritis (SJIA) patients treated with canakinumab or placebo and healthy controls.\"\n",
    "    )\n",
    "    \n",
    "    # 6. If the linked data is usable, save it as a CSV file.\n",
    "    if is_usable:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        unbiased_linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"The dataset was determined to be not usable for analysis due to bias in the trait distribution.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}