File size: 44,091 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "0698db73",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:53.021930Z",
     "iopub.status.busy": "2025-03-25T06:53:53.021564Z",
     "iopub.status.idle": "2025-03-25T06:53:53.185422Z",
     "shell.execute_reply": "2025-03-25T06:53:53.185083Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Autoinflammatory_Disorders\"\n",
    "cohort = \"GSE80060\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Autoinflammatory_Disorders\"\n",
    "in_cohort_dir = \"../../input/GEO/Autoinflammatory_Disorders/GSE80060\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Autoinflammatory_Disorders/GSE80060.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Autoinflammatory_Disorders/gene_data/GSE80060.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Autoinflammatory_Disorders/clinical_data/GSE80060.csv\"\n",
    "json_path = \"../../output/preprocess/Autoinflammatory_Disorders/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "34eb7157",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c17e38e6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:53.186813Z",
     "iopub.status.busy": "2025-03-25T06:53:53.186678Z",
     "iopub.status.idle": "2025-03-25T06:53:53.690176Z",
     "shell.execute_reply": "2025-03-25T06:53:53.689803Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression data of whole blood of systemic juvenile idiopathic arthritis (SJIA) patients treated with canakinumab or placebo and age matched healthy controls\"\n",
      "!Series_summary\t\"Canakinumab is a human anti-interleukin-1 beta (IL-1 beta) monoclonal antibody neutralizing IL-1 beta. Systemic juvenile idiopathic arthritis (SJIA) is a rare, multigenic, autoinflammatory disease of unknown etiology characterized by chronic arthritis; intermittent high-spiking fever, rash, and elevated levels of acute-phase reactants. Blood samples of SJIA patients were obtained from two phase 3 clinical trials conducted by the members of the Pediatric Rheumatology International Trials Organization (PRINTO) and the Pediatric Rheumatology Collaborative Study Group (PRCSG) (Clinicaltrials.gov: NCT00886769 and NCT00889863). For patients, baseline and day 3 samples were analyzed for either placebo or canakinumab (Ilaris) treatment.\"\n",
      "!Series_summary\t\"Clinical response was assessed at day 15 using adapted JIA American College of Rheumatology (ACR) response criteria.\"\n",
      "!Series_overall_design\t\"Overall, 206 samples were used in this study including 22 samples from healthy controls, 33 samples of placebo treated patients and 151 samples of canakinumab treated patients.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: Whole blood'], 1: ['disease status: SJIA', 'disease status: Healthy'], 2: ['subject id: SJIA_2_2513', 'subject id: SJIA_2_313', 'subject id: SJIA_2_413', 'subject id: SJIA_2_712', 'subject id: SJIA_2_812', 'subject id: SJIA_2_912', 'subject id: SJIA_2_1013', 'subject id: SJIA_2_1112', 'subject id: SJIA_2_2912', 'subject id: SJIA_2_3012', 'subject id: SJIA_2_1413', 'subject id: SJIA_2_1411', 'subject id: SJIA_2_168', 'subject id: SJIA_2_167', 'subject id: SJIA_2_1713', 'subject id: SJIA_2_1811', 'subject id: SJIA_2_185', 'subject id: SJIA_2_1912', 'subject id: SJIA_2_2213', 'subject id: SJIA_2_2313', 'subject id: SJIA_2_2312', 'subject id: SJIA_2_113', 'subject id: SJIA_2_2613', 'subject id: SJIA_2_212', 'subject id: SJIA_2_310', 'subject id: SJIA_2_36', 'subject id: SJIA_2_512', 'subject id: SJIA_2_511', 'subject id: SJIA_2_613', 'subject id: SJIA_2_612'], 3: ['visit: Day1_BL', 'visit: Day3'], 4: ['treatment: Canakinumab', 'treatment: Placebo', 'treatment: none'], 5: ['acr response at day 15: 100', 'acr response at day 15: NA', 'acr response at day 15: 30', 'acr response at day 15: 70', 'acr response at day 15: 90', 'acr response at day 15: 0', 'acr response at day 15: 50']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d4749d5c",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "64bb7a55",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:53.691554Z",
     "iopub.status.busy": "2025-03-25T06:53:53.691448Z",
     "iopub.status.idle": "2025-03-25T06:53:53.700086Z",
     "shell.execute_reply": "2025-03-25T06:53:53.699803Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical data:\n",
      "{'feature_0': [nan], 'feature_1': [0.0], 'feature_2': [1.0], 'feature_3': [nan], 'feature_4': [nan], 'feature_5': [nan]}\n",
      "Clinical data saved to ../../output/preprocess/Autoinflammatory_Disorders/clinical_data/GSE80060.csv\n"
     ]
    }
   ],
   "source": [
    "# Libraries needed\n",
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Determine if gene expression data is available\n",
    "# Based on the background information, this is a gene expression dataset from whole blood\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable availability and data type conversion\n",
    "# 2.1 Identify keys for trait, age, and gender\n",
    "# For trait, we can use disease status at index 1\n",
    "trait_row = 1  # Disease status (SJIA vs Healthy)\n",
    "\n",
    "# Age and gender are not explicitly provided in the sample characteristics\n",
    "age_row = None  # Age not available\n",
    "gender_row = None  # Gender not available\n",
    "\n",
    "# 2.2 Data type conversion functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert disease status to binary (1 for SJIA, 0 for Healthy)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    # Extract the value after the colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if 'SJIA' in value:\n",
    "        return 1  # SJIA\n",
    "    elif 'Healthy' in value:\n",
    "        return 0  # Healthy control\n",
    "    else:\n",
    "        return None  # Unknown or not applicable\n",
    "\n",
    "# Since age and gender are not available, we still define placeholder functions\n",
    "def convert_age(value):\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    return None\n",
    "\n",
    "# 3. Save metadata about dataset usability\n",
    "# Determine trait availability based on trait_row\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial filtering results\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (only if trait_row is not None)\n",
    "if trait_row is not None:\n",
    "    # Create a sample characteristics dictionary from the output of previous step\n",
    "    sample_characteristics_dict = {\n",
    "        0: ['tissue: Whole blood'], \n",
    "        1: ['disease status: SJIA', 'disease status: Healthy'], \n",
    "        2: ['subject id: SJIA_2_2513', 'subject id: SJIA_2_313', 'subject id: SJIA_2_413', 'subject id: SJIA_2_712', \n",
    "            'subject id: SJIA_2_812', 'subject id: SJIA_2_912', 'subject id: SJIA_2_1013', 'subject id: SJIA_2_1112', \n",
    "            'subject id: SJIA_2_2912', 'subject id: SJIA_2_3012', 'subject id: SJIA_2_1413', 'subject id: SJIA_2_1411', \n",
    "            'subject id: SJIA_2_168', 'subject id: SJIA_2_167', 'subject id: SJIA_2_1713', 'subject id: SJIA_2_1811', \n",
    "            'subject id: SJIA_2_185', 'subject id: SJIA_2_1912', 'subject id: SJIA_2_2213', 'subject id: SJIA_2_2313', \n",
    "            'subject id: SJIA_2_2312', 'subject id: SJIA_2_113', 'subject id: SJIA_2_2613', 'subject id: SJIA_2_212', \n",
    "            'subject id: SJIA_2_310', 'subject id: SJIA_2_36', 'subject id: SJIA_2_512', 'subject id: SJIA_2_511', \n",
    "            'subject id: SJIA_2_613', 'subject id: SJIA_2_612'], \n",
    "        3: ['visit: Day1_BL', 'visit: Day3'], \n",
    "        4: ['treatment: Canakinumab', 'treatment: Placebo', 'treatment: none'], \n",
    "        5: ['acr response at day 15: 100', 'acr response at day 15: NA', 'acr response at day 15: 30', \n",
    "            'acr response at day 15: 70', 'acr response at day 15: 90', 'acr response at day 15: 0', \n",
    "            'acr response at day 15: 50']\n",
    "    }\n",
    "    \n",
    "    # From the output of previous step, determine max length needed for the DataFrame\n",
    "    max_len = max(len(values) for values in sample_characteristics_dict.values())\n",
    "    \n",
    "    # Create a DataFrame with appropriate dimensions\n",
    "    clinical_data = pd.DataFrame(index=range(max_len))\n",
    "    \n",
    "    # Add each feature as a column, padding shorter lists with None\n",
    "    for key, values in sample_characteristics_dict.items():\n",
    "        # Extend shorter lists with None values\n",
    "        padded_values = values + [None] * (max_len - len(values))\n",
    "        clinical_data[f'feature_{key}'] = padded_values\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical data\n",
    "    preview_data = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical data:\")\n",
    "    print(preview_data)\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save to CSV\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "199de9e0",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "dd1f4c90",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:53.701253Z",
     "iopub.status.busy": "2025-03-25T06:53:53.701151Z",
     "iopub.status.idle": "2025-03-25T06:53:54.727644Z",
     "shell.execute_reply": "2025-03-25T06:53:54.727274Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at', '1294_at',\n",
      "       '1316_at', '1320_at', '1405_i_at', '1431_at', '1438_at', '1487_at',\n",
      "       '1494_f_at', '1552256_a_at', '1552257_a_at', '1552258_at', '1552261_at',\n",
      "       '1552263_at', '1552264_a_at', '1552266_at'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "43c5e642",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "f0eb0a5b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:54.728946Z",
     "iopub.status.busy": "2025-03-25T06:53:54.728833Z",
     "iopub.status.idle": "2025-03-25T06:53:54.730704Z",
     "shell.execute_reply": "2025-03-25T06:53:54.730437Z"
    }
   },
   "outputs": [],
   "source": [
    "# The gene identifiers appear to be probe set IDs from an Affymetrix microarray\n",
    "# These are not human gene symbols and would need to be mapped to proper gene symbols\n",
    "\n",
    "# Looking at identifiers like '1007_s_at', '1053_at', etc., these follow the pattern\n",
    "# of Affymetrix probe IDs which need to be mapped to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "df86a07c",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "36be6348",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:54.731824Z",
     "iopub.status.busy": "2025-03-25T06:53:54.731726Z",
     "iopub.status.idle": "2025-03-25T06:54:10.524967Z",
     "shell.execute_reply": "2025-03-25T06:54:10.524594Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409 /// XM_006715073'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype', '0001655 // urogenital system development // inferred from sequence or structural similarity /// 0001656 // metanephros development // inferred from electronic annotation /// 0001658 // branching involved in ureteric bud morphogenesis // inferred from expression pattern /// 0001822 // kidney development // inferred from expression pattern /// 0001823 // mesonephros development // inferred from sequence or structural similarity /// 0003337 // mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from expression pattern /// 0006351 // transcription, DNA-templated // inferred from direct assay /// 0006355 // regulation of transcription, DNA-templated // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007417 // central nervous system development // inferred from expression pattern /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from expression pattern /// 0030878 // thyroid gland development // inferred from mutant phenotype /// 0038194 // thyroid-stimulating hormone signaling pathway // traceable author statement /// 0039003 // pronephric field specification // inferred from sequence or structural similarity /// 0042472 // inner ear morphogenesis // inferred from sequence or structural similarity /// 0042981 // regulation of apoptotic process // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-templated // inferred from direct assay /// 0045893 // positive regulation of transcription, DNA-templated // inferred from sequence or structural similarity /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay /// 0048793 // pronephros development // inferred from sequence or structural similarity /// 0071371 // cellular response to gonadotropin stimulus // inferred from direct assay /// 0071599 // otic vesicle development // inferred from expression pattern /// 0072050 // S-shaped body morphogenesis // inferred from electronic annotation /// 0072073 // kidney epithelium development // inferred from electronic annotation /// 0072108 // positive regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from sequence or structural similarity /// 0072164 // mesonephric tubule development // inferred from electronic annotation /// 0072207 // metanephric epithelium development // inferred from expression pattern /// 0072221 // metanephric distal convoluted tubule development // inferred from sequence or structural similarity /// 0072278 // metanephric comma-shaped body morphogenesis // inferred from expression pattern /// 0072284 // metanephric S-shaped body morphogenesis // inferred from expression pattern /// 0072289 // metanephric nephron tubule formation // inferred from sequence or structural similarity /// 0072305 // negative regulation of mesenchymal cell apoptotic process involved in metanephric nephron morphogenesis // inferred from sequence or structural similarity /// 0072307 // regulation of metanephric nephron tubule epithelial cell differentiation // inferred from sequence or structural similarity /// 0090190 // positive regulation of branching involved in ureteric bud morphogenesis // inferred from sequence or structural similarity /// 1900212 // negative regulation of mesenchymal cell apoptotic process involved in metanephros development // inferred from sequence or structural similarity /// 1900215 // negative regulation of apoptotic process involved in metanephric collecting duct development // inferred from sequence or structural similarity /// 1900218 // negative regulation of apoptotic process involved in metanephric nephron tubule development // inferred from sequence or structural similarity /// 2000594 // positive regulation of metanephric DCT cell differentiation // inferred from sequence or structural similarity /// 2000611 // positive regulation of thyroid hormone generation // inferred from mutant phenotype /// 2000612 // regulation of thyroid-stimulating hormone secretion // inferred from mutant phenotype', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007602 // phototransduction // inferred from electronic annotation /// 0007603 // phototransduction, visible light // traceable author statement /// 0016056 // rhodopsin mediated signaling pathway // traceable author statement /// 0022400 // regulation of rhodopsin mediated signaling pathway // traceable author statement /// 0030828 // positive regulation of cGMP biosynthetic process // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0031284 // positive regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay', '0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005730 // nucleolus // inferred from direct assay', '0001750 // photoreceptor outer segment // inferred from electronic annotation /// 0001917 // photoreceptor inner segment // inferred from electronic annotation /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0097381 // photoreceptor disc membrane // traceable author statement'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay', '0000979 // RNA polymerase II core promoter sequence-specific DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from mutant phenotype /// 0003700 // sequence-specific DNA binding transcription factor activity // inferred from direct assay /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0044212 // transcription regulatory region DNA binding // inferred from direct assay', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation /// 0046872 // metal ion binding // inferred from electronic annotation']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0b7d96cc",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "00311315",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:54:10.526339Z",
     "iopub.status.busy": "2025-03-25T06:54:10.526113Z",
     "iopub.status.idle": "2025-03-25T06:54:11.303916Z",
     "shell.execute_reply": "2025-03-25T06:54:11.303594Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping preview (first 5 rows):\n",
      "          ID              Gene\n",
      "0  1007_s_at  DDR1 /// MIR4640\n",
      "1    1053_at              RFC2\n",
      "2     117_at             HSPA6\n",
      "3     121_at              PAX8\n",
      "4  1255_g_at            GUCA1A\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of genes after mapping: 21278\n",
      "Sample of gene expression data after mapping (first 5 genes):\n",
      "          GSM2111993  GSM2111994  GSM2111995  GSM2111996  GSM2111997  \\\n",
      "Gene                                                                   \n",
      "A1BG       20.531274   14.741187   11.079894   10.599425   11.433046   \n",
      "A1BG-AS1   88.194790   47.904730   81.249540   43.318430   47.088590   \n",
      "A1CF        7.832409    7.952191   10.122947    7.881265    8.623113   \n",
      "A2M        75.558405   56.413898   77.866086   53.556840   61.194481   \n",
      "A2M-AS1   172.515520  345.047360  205.631310  344.107630  429.584250   \n",
      "\n",
      "          GSM2111998  GSM2111999  GSM2112000  GSM2112001  GSM2112002  ...  \\\n",
      "Gene                                                                  ...   \n",
      "A1BG       15.974882   16.569076   14.513591   10.338256   13.122920  ...   \n",
      "A1BG-AS1   60.742230   71.671910   65.129780   69.265340   56.305330  ...   \n",
      "A1CF       10.524899    8.914323    8.883382    7.754067    9.206250  ...   \n",
      "A2M        63.169296   47.926185   66.119639   63.004756   61.837691  ...   \n",
      "A2M-AS1   205.832720  134.525120  379.994240  408.396170  371.336110  ...   \n",
      "\n",
      "          GSM2112189  GSM2112190  GSM2112191  GSM2112192  GSM2112193  \\\n",
      "Gene                                                                   \n",
      "A1BG       14.387063   21.652020   14.041388   13.878591   13.629006   \n",
      "A1BG-AS1  104.179640  201.202520  106.011750  123.695760   96.545120   \n",
      "A1CF        7.844039   11.298281    8.708103    8.625491    7.128476   \n",
      "A2M        58.109497   70.152277   59.369086   50.004444   47.648580   \n",
      "A2M-AS1   389.584460  210.550010  311.475620  161.494760  207.657620   \n",
      "\n",
      "          GSM2112194  GSM2112195  GSM2112196  GSM2112197  GSM2112198  \n",
      "Gene                                                                  \n",
      "A1BG       16.496872   14.003997   14.148560   15.815815   15.271545  \n",
      "A1BG-AS1  114.291030  120.550520  110.536450  100.031520  127.508690  \n",
      "A1CF        9.355447    9.080456    8.572888    8.933971    8.768014  \n",
      "A2M        40.669336   55.749847   41.180565   52.927077   38.665257  \n",
      "A2M-AS1   103.648910   71.843920   86.290200   43.169810   86.361580  \n",
      "\n",
      "[5 rows x 206 columns]\n"
     ]
    }
   ],
   "source": [
    "# 1. Observe gene identifiers and annotation to identify relevant columns\n",
    "# The gene expression data has identifiers like '1007_s_at' in the index (using 'ID' as key)\n",
    "# The gene annotation dataframe has a column 'ID' with the same format identifiers\n",
    "# The 'Gene Symbol' column contains the gene symbols we need to map to\n",
    "\n",
    "# 2. Get gene mapping dataframe\n",
    "# Extract relevant columns for mapping from the gene annotation dataframe\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n",
    "\n",
    "# Preview the mapping dataframe\n",
    "print(\"Gene mapping preview (first 5 rows):\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Print the number of genes after mapping\n",
    "print(f\"Number of genes after mapping: {len(gene_data)}\")\n",
    "\n",
    "# Show a sample of the mapped gene expression data\n",
    "print(\"Sample of gene expression data after mapping (first 5 genes):\")\n",
    "print(gene_data.head())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e7b2c082",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "267197fe",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:54:11.305318Z",
     "iopub.status.busy": "2025-03-25T06:54:11.305206Z",
     "iopub.status.idle": "2025-03-25T06:54:13.713367Z",
     "shell.execute_reply": "2025-03-25T06:54:13.712975Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original gene count: 21278\n",
      "Normalized gene count: 19845\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Autoinflammatory_Disorders/gene_data/GSE80060.csv\n",
      "Linking clinical and genetic data failed - no valid rows or trait column missing\n",
      "Abnormality detected in the cohort: GSE80060. Preprocessing failed.\n",
      "The dataset was determined to be not usable for analysis.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "# First, normalize gene symbols using the function from the library\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Original gene count: {len(gene_data)}\")\n",
    "print(f\"Normalized gene count: {len(normalized_gene_data)}\")\n",
    "\n",
    "# Create directory for the gene data file if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "\n",
    "# Save the normalized gene data to a CSV file\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. We need to first load or recreate the selected_clinical_df\n",
    "try:\n",
    "    # Try to load the previously saved clinical data\n",
    "    selected_clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "except:\n",
    "    # If loading fails, recreate the clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "\n",
    "    # Preview the extracted clinical features\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    print(preview)\n",
    "\n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "\n",
    "# Check if linking was successful\n",
    "if len(linked_data) == 0 or trait not in linked_data.columns:\n",
    "    print(\"Linking clinical and genetic data failed - no valid rows or trait column missing\")\n",
    "    # Set is_usable to False and save cohort info\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=True,  # Consider it biased if linking fails\n",
    "        df=pd.DataFrame({trait: [], 'Gender': []}), \n",
    "        note=\"Data linking failed - unable to process gene expression data appropriately.\"\n",
    "    )\n",
    "    print(\"The dataset was determined to be not usable for analysis.\")\n",
    "else:\n",
    "    # 3. Handle missing values in the linked data\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    \n",
    "    print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "    \n",
    "    # 4. Determine whether the trait and demographic features are severely biased\n",
    "    trait_type = 'binary' if len(linked_data[trait].unique()) <= 2 else 'continuous'\n",
    "    if trait_type == 'binary':\n",
    "        if len(linked_data[trait].value_counts()) >= 2:\n",
    "            is_trait_biased = judge_binary_variable_biased(linked_data, trait)\n",
    "        else:\n",
    "            print(f\"Trait '{trait}' has only one unique value, considering it biased.\")\n",
    "            is_trait_biased = True\n",
    "    else:\n",
    "        is_trait_biased = judge_continuous_variable_biased(linked_data, trait)\n",
    "    \n",
    "    # Remove biased demographic features\n",
    "    unbiased_linked_data = linked_data.copy()\n",
    "    if 'Age' in unbiased_linked_data.columns:\n",
    "        age_biased = judge_continuous_variable_biased(unbiased_linked_data, 'Age')\n",
    "        if age_biased:\n",
    "            print(f\"The distribution of the feature \\'Age\\' in this dataset is severely biased.\")\n",
    "            unbiased_linked_data = unbiased_linked_data.drop(columns=['Age'])\n",
    "    \n",
    "    if 'Gender' in unbiased_linked_data.columns:\n",
    "        if len(unbiased_linked_data['Gender'].value_counts()) >= 2:\n",
    "            gender_biased = judge_binary_variable_biased(unbiased_linked_data, 'Gender')\n",
    "            if gender_biased:\n",
    "                print(f\"The distribution of the feature \\'Gender\\' in this dataset is severely biased.\")\n",
    "                unbiased_linked_data = unbiased_linked_data.drop(columns=['Gender'])\n",
    "        else:\n",
    "            print(f\"Gender has only one unique value, considering it biased and removing.\")\n",
    "            unbiased_linked_data = unbiased_linked_data.drop(columns=['Gender'])\n",
    "    \n",
    "    # 5. Conduct quality check and save the cohort information.\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=is_trait_biased, \n",
    "        df=unbiased_linked_data, \n",
    "        note=\"Dataset contains gene expression data from whole blood of systemic juvenile idiopathic arthritis (SJIA) patients treated with canakinumab or placebo and healthy controls.\"\n",
    "    )\n",
    "    \n",
    "    # 6. If the linked data is usable, save it as a CSV file.\n",
    "    if is_usable:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        unbiased_linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"The dataset was determined to be not usable for analysis due to bias in the trait distribution.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}