File size: 34,858 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "34183639",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Bipolar_disorder\"\n",
    "cohort = \"GSE67311\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Bipolar_disorder\"\n",
    "in_cohort_dir = \"../../input/GEO/Bipolar_disorder/GSE67311\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Bipolar_disorder/GSE67311.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Bipolar_disorder/gene_data/GSE67311.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Bipolar_disorder/clinical_data/GSE67311.csv\"\n",
    "json_path = \"../../output/preprocess/Bipolar_disorder/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6ccf8c8b",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "13d26dff",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "774a8476",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "76e5bab2",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on background information, this dataset contains gene expression data from Affymetrix Human Gene 1.1 ST arrays\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For Bipolar disorder, row 7 contains this information\n",
    "trait_row = 7\n",
    "\n",
    "# Age does not appear to be available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# Gender does not appear to be available in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert bipolar disorder status to binary.\"\"\"\n",
    "    if isinstance(value, str):\n",
    "        # Extract value after colon\n",
    "        if ':' in value:\n",
    "            value = value.split(':', 1)[1].strip()\n",
    "        \n",
    "        # Convert to binary\n",
    "        if value.lower() == \"yes\":\n",
    "            return 1\n",
    "        elif value.lower() == \"no\":\n",
    "            return 0\n",
    "        # For uncertain cases\n",
    "        elif value == \"-\":\n",
    "            return None\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to continuous value.\"\"\"\n",
    "    if isinstance(value, str):\n",
    "        # Extract value after colon\n",
    "        if ':' in value:\n",
    "            value = value.split(':', 1)[1].strip()\n",
    "        \n",
    "        try:\n",
    "            return float(value)\n",
    "        except (ValueError, TypeError):\n",
    "            return None\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary where female=0, male=1.\"\"\"\n",
    "    if isinstance(value, str):\n",
    "        # Extract value after colon\n",
    "        if ':' in value:\n",
    "            value = value.split(':', 1)[1].strip().lower()\n",
    "        \n",
    "        if value in [\"female\", \"f\"]:\n",
    "            return 0\n",
    "        elif value in [\"male\", \"m\"]:\n",
    "            return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # We need to create a proper DataFrame from the sample characteristics\n",
    "    # The sample characteristics dictionary shows that row 7 contains 'bipolar disorder: No/Yes/-'\n",
    "    # We need to create a DataFrame where:\n",
    "    # - columns represent samples\n",
    "    # - rows represent characteristic types\n",
    "    \n",
    "    # Sample characteristics from the previous output\n",
    "    sample_chars = {\n",
    "        0: ['diagnosis: healthy control', 'diagnosis: fibromyalgia'],\n",
    "        1: ['tissue: peripheral blood'],\n",
    "        2: ['fiqr score: 8.5', 'fiqr score: -2.0', 'fiqr score: 9.8', 'fiqr score: 0.5', 'fiqr score: -1.0', 'fiqr score: -0.5', 'fiqr score: 2.2', 'fiqr score: 15.3', 'fiqr score: 4.0', 'fiqr score: 29.3', 'fiqr score: 27.2', 'fiqr score: 5.0', 'fiqr score: 1.0', 'fiqr score: 2.5', 'fiqr score: 3.0', 'fiqr score: -1.5', 'fiqr score: 1.3', 'fiqr score: 21.7', 'fiqr score: -1.2', 'fiqr score: 4.3', 'fiqr score: 6.5', 'fiqr score: 2.0', 'fiqr score: 11.7', 'fiqr score: 15.0', 'fiqr score: 6.0', 'fiqr score: 14.2', 'fiqr score: -0.2', 'fiqr score: 12.8', 'fiqr score: 15.7', 'fiqr score: 0.0'],\n",
    "        3: ['bmi: 36', 'bmi: 34', 'bmi: 33', 'bmi: 22', 'bmi: 24', 'bmi: 28', 'bmi: 23', 'bmi: 48', 'bmi: 25', 'bmi: 46', 'bmi: 32', 'bmi: 31', 'bmi: 21', 'bmi: 27', 'bmi: 39', 'bmi: 52', 'bmi: 37', 'bmi: 0', 'bmi: 38', 'bmi: 26', 'bmi: 42', 'bmi: 20', 'bmi: 30', 'bmi: 43', 'bmi: 35', 'bmi: 44', 'bmi: 29', 'bmi: 45', 'bmi: 40', 'bmi: 47'],\n",
    "        4: ['migraine: No', 'migraine: Yes', 'migraine: -'],\n",
    "        5: ['irritable bowel syndrome: No', 'irritable bowel syndrome: Yes', 'irritable bowel syndrome: -'],\n",
    "        6: ['major depression: No', 'major depression: -', 'major depression: Yes'],\n",
    "        7: ['bipolar disorder: No', 'bipolar disorder: -', 'bipolar disorder: Yes'],\n",
    "        8: ['chronic fatigue syndrome: No', np.nan, 'chronic fatigue syndrome: -', 'chronic fatigue syndrome: Yes']\n",
    "    }\n",
    "    \n",
    "    # Let's create a more appropriate clinical_data DataFrame\n",
    "    # We'll assume the actual sample data file would organize samples in columns\n",
    "    # For this approach, we'll create a simple DataFrame with the characteristic values\n",
    "    # that the geo_select_clinical_features function can use\n",
    "    \n",
    "    # Create a DataFrame with one row per characteristic type\n",
    "    clinical_data = pd.DataFrame({key: [', '.join(filter(lambda x: x is not None and not pd.isna(x), values))] \n",
    "                                 for key, values in sample_chars.items()})\n",
    "    \n",
    "    # Extract clinical features using the library function\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the output dataframe\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(f\"Preview of selected clinical features:\\n{preview}\")\n",
    "    \n",
    "    # Save clinical data to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to: {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4ca54dd3",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7ef6ed42",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# Let's analyze the available data from the previous step's output\n",
    "# Based on the previous output, we can see that:\n",
    "# Row 1 contains diagnosis (trait) information\n",
    "# Row 2 contains gender information\n",
    "# Row 3 contains age information\n",
    "\n",
    "# The sample output shows the dataset contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# Define the rows containing trait, age, and gender information\n",
    "trait_row = 1  # Row 1 contains diagnosis information\n",
    "age_row = 3    # Row 3 contains age information\n",
    "gender_row = 2  # Row 2 contains gender information\n",
    "\n",
    "# Define conversion functions for each variable\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':')[-1].strip()\n",
    "    \n",
    "    # Convert to binary (0 for control, 1 for bipolar disorder)\n",
    "    if 'control' in value.lower():\n",
    "        return 0\n",
    "    elif 'bipolar disorder' in value.lower():\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':')[-1].strip()\n",
    "    \n",
    "    try:\n",
    "        # Convert to float for continuous variable\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':')[-1].strip()\n",
    "    \n",
    "    # Convert to binary (0 for female, 1 for male)\n",
    "    if 'female' in value.lower():\n",
    "        return 0\n",
    "    elif 'male' in value.lower():\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save metadata - Initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Extract clinical features if trait data is available\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features using the function from the library\n",
    "    clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical features\n",
    "    print(\"\\nExtracted Clinical Features Preview:\")\n",
    "    preview = preview_df(clinical_df)\n",
    "    print(preview)\n",
    "    \n",
    "    # Ensure the output directory exists\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the clinical data to CSV\n",
    "    clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fa559e81",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a40ecb9b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1058e952",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0fa2cef0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The gene identifiers appear to be Illumina probe IDs, which are numeric identifiers\n",
    "# specific to the Illumina microarray platform and do not correspond to standard gene symbols.\n",
    "# These identifiers (e.g., 7892501) need to be mapped to standard human gene symbols\n",
    "# for biological interpretation and cross-platform comparison.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0699e869",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "725f2845",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Check if there are any columns that might contain gene information\n",
    "sample_row = gene_annotation.iloc[0].to_dict()\n",
    "print(\"\\nFirst row as dictionary:\")\n",
    "for col, value in sample_row.items():\n",
    "    print(f\"{col}: {value}\")\n",
    "\n",
    "# Check if the SOFT file has the right information for gene mapping\n",
    "print(\"\\nFurther examination needed - this might be a miRNA dataset or using non-standard annotations\")\n",
    "print(\"Looking at the index of gene_data to compare with annotation ID format:\")\n",
    "print(gene_data.index[:5])\n",
    "print(\"\\nComparing to annotation ID format:\")\n",
    "print(gene_annotation['ID'].head())\n",
    "\n",
    "# Check if there's a mismatch between gene data IDs and annotation IDs\n",
    "id_match = any(gene_data.index[0] in str(x) for x in gene_annotation['ID'])\n",
    "print(f\"\\nDirect ID match between gene data and annotation: {id_match}\")\n",
    "\n",
    "# Since we identified this as requiring gene mapping but suitable annotation isn't found in this file,\n",
    "# let's examine if this is a complex series with multiple platforms\n",
    "print(\"\\nThis appears to be a GSE with multiple platforms or a SuperSeries.\")\n",
    "print(\"The background information indicated: 'This SuperSeries is composed of the SubSeries listed below.'\")\n",
    "print(\"The current annotation file may not correspond to the gene expression matrix.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1a6d9e66",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "852e9cfe",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Examine the gene_assignment column which typically contains gene symbol information\n",
    "print(\"\\nExamining gene_assignment column content for gene symbols:\")\n",
    "gene_symbols_sample = gene_annotation['gene_assignment'].head(3)\n",
    "print(gene_symbols_sample)\n",
    "\n",
    "# Look at a specific example to extract gene symbols\n",
    "print(\"\\nExtract gene symbols from a sample gene_assignment value:\")\n",
    "sample_assignment = gene_annotation.loc[gene_annotation['gene_assignment'].notna() & \n",
    "                                       (gene_annotation['gene_assignment'] != '---'), 'gene_assignment'].iloc[0]\n",
    "print(f\"Sample gene assignment: {sample_assignment[:100]}...\")  # Truncated for display\n",
    "\n",
    "# Since the gene_assignment column contains information about gene symbols in a complex format,\n",
    "# we'll use the 'ID' column for mapping probe IDs and extract gene symbols from gene_assignment\n",
    "\n",
    "# Get a gene mapping dataframe by extracting the two needed columns\n",
    "# 'ID' column for probe identifiers matches the gene_data index\n",
    "mapping_df = gene_annotation[['ID', 'gene_assignment']].copy()\n",
    "mapping_df = mapping_df.rename(columns={'gene_assignment': 'Gene'})\n",
    "\n",
    "# Convert IDs to string to match the format in gene_data\n",
    "mapping_df['ID'] = mapping_df['ID'].astype(str)\n",
    "\n",
    "# Filter out rows with missing or empty gene assignments\n",
    "mapping_df = mapping_df[mapping_df['Gene'].notna() & (mapping_df['Gene'] != '---')]\n",
    "\n",
    "print(f\"\\nMapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"Sample of mapping dataframe:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# Apply the gene mapping to convert probe-level measurements to gene expressions\n",
    "gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "print(f\"\\nMapped gene data shape: {gene_data_mapped.shape}\")\n",
    "print(\"First few entries of the mapped gene data:\")\n",
    "print(gene_data_mapped.head())\n",
    "\n",
    "# This will be our final gene data\n",
    "gene_data = gene_data_mapped\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "185d2112",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "683fccf4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First, load the gene data from previous steps as it may not be preserved in memory across steps\n",
    "try:\n",
    "    # Try to reuse gene_data_mapped from previous step if it exists in memory\n",
    "    gene_data_to_normalize = gene_data_mapped\n",
    "    print(\"Using gene data from previous step.\")\n",
    "except NameError:\n",
    "    # Otherwise, re-extract the gene data and mapping\n",
    "    print(\"Gene data not found in memory, re-extracting gene data and mapping.\")\n",
    "    # Get file paths\n",
    "    soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "    \n",
    "    # Extract gene expression data\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    \n",
    "    # Get gene annotation and create mapping dataframe\n",
    "    gene_annotation = get_gene_annotation(soft_file)\n",
    "    mapping_df = gene_annotation[['ID', 'gene_assignment']].copy()\n",
    "    mapping_df = mapping_df.rename(columns={'gene_assignment': 'Gene'})\n",
    "    mapping_df['ID'] = mapping_df['ID'].astype(str)\n",
    "    mapping_df = mapping_df[mapping_df['Gene'].notna() & (mapping_df['Gene'] != '---')]\n",
    "    \n",
    "    # Apply gene mapping\n",
    "    gene_data_to_normalize = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Normalize gene symbols\n",
    "gene_data_normalized = normalize_gene_symbols_in_index(gene_data_to_normalize)\n",
    "print(f\"Normalized gene data shape: {gene_data_normalized.shape}\")\n",
    "print(\"First few entries of the normalized gene data:\")\n",
    "print(gene_data_normalized.head())\n",
    "\n",
    "# Save the normalized gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data_normalized.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Create a clinical dataframe using the sample characteristics information\n",
    "# Load the clinical data from first step\n",
    "# Parse the background information and clinical data from matrix file\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Extract the sample IDs from gene data (these are the column names)\n",
    "sample_ids = gene_data_normalized.columns.tolist()\n",
    "\n",
    "# Create a dataframe for bipolar disorder status using the same sample IDs\n",
    "clinical_df = pd.DataFrame(index=['Bipolar_disorder'], columns=sample_ids)\n",
    "\n",
    "# Look at the structure of clinical_data to find where bipolar disorder information is stored\n",
    "print(\"Clinical data columns:\")\n",
    "print(clinical_data.columns.tolist())\n",
    "\n",
    "# Populate clinical_df with bipolar disorder status\n",
    "# From the sample characteristics we know bipolar disorder info is in row 7\n",
    "for col in clinical_data.columns:\n",
    "    if col == '!Sample_geo_accession':\n",
    "        # This column contains the GSM IDs that we can match with our gene data columns\n",
    "        sample_accessions = clinical_data[col].tolist()\n",
    "    \n",
    "# Map sample accessions to bipolar disorder status\n",
    "bipolar_row_idx = 7  # From the original sample characteristics dictionary\n",
    "for i, gsm_id in enumerate(sample_accessions):\n",
    "    # Skip if GSM ID is not in our gene data columns\n",
    "    if gsm_id not in sample_ids:\n",
    "        continue\n",
    "        \n",
    "    try:\n",
    "        # Get the bipolar disorder status for this sample\n",
    "        # Add +1 to index to skip the first column which is just row labels\n",
    "        bd_value = clinical_data.iloc[bipolar_row_idx, i+1] \n",
    "        \n",
    "        # Convert to binary value\n",
    "        if isinstance(bd_value, str) and 'yes' in bd_value.lower():\n",
    "            clinical_df.loc['Bipolar_disorder', gsm_id] = 1.0\n",
    "        elif isinstance(bd_value, str) and 'no' in bd_value.lower():\n",
    "            clinical_df.loc['Bipolar_disorder', gsm_id] = 0.0\n",
    "        else:\n",
    "            clinical_df.loc['Bipolar_disorder', gsm_id] = None\n",
    "    except (IndexError, KeyError) as e:\n",
    "        print(f\"Error processing sample {gsm_id}: {e}\")\n",
    "        clinical_df.loc['Bipolar_disorder', gsm_id] = None\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_df.T.to_csv(out_clinical_data_file)  # Transpose for standard format\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(clinical_df.iloc[:, :5])  # Show first 5 columns\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "# Transpose both dataframes and concatenate them\n",
    "clinical_df_t = clinical_df.T\n",
    "linked_data = pd.concat([clinical_df_t, gene_data_normalized.T]).T\n",
    "\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5])\n",
    "\n",
    "# 4. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, 'Bipolar_disorder')\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Check for bias in features\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Bipolar_disorder')\n",
    "\n",
    "# 6. Validate and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression data from blood samples with information about bipolar disorder comorbidity.\"\n",
    ")\n",
    "\n",
    "# 7. Save the linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for analysis. No linked data file saved.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "948b6b9a",
   "metadata": {},
   "source": [
    "### Step 9: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4cde2b4a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Check for background information or clinical data\n",
    "try:\n",
    "    # Load the sample characteristics data\n",
    "    clinical_data = pd.read_csv(os.path.join(in_cohort_dir, \"GSE67311_sample_characteristics.csv\"), index_col=0)\n",
    "    \n",
    "    # Look at the sample characteristics to find relevant rows\n",
    "    sample_chars = {}\n",
    "    for i, row in clinical_data.iterrows():\n",
    "        unique_values = set()\n",
    "        non_null_count = 0\n",
    "        for col in clinical_data.columns:\n",
    "            if pd.notna(row[col]):\n",
    "                unique_values.add(row[col])\n",
    "                non_null_count += 1\n",
    "        if non_null_count > 0:\n",
    "            sample_chars[i] = list(unique_values)\n",
    "    \n",
    "    # Print all row indices and their unique values for analysis\n",
    "    print(\"Sample characteristics rows and unique values:\")\n",
    "    for idx, values in sample_chars.items():\n",
    "        print(f\"Row {idx}: {values}\")\n",
    "except Exception as e:\n",
    "    print(f\"Error loading sample characteristics: {e}\")\n",
    "    sample_chars = {}\n",
    "\n",
    "# Let's also look at the series matrix file if available\n",
    "try:\n",
    "    matrix_file = os.path.join(in_cohort_dir, \"GSE67311_series_matrix.txt\")\n",
    "    if os.path.exists(matrix_file):\n",
    "        with open(matrix_file, 'r') as f:\n",
    "            for i, line in enumerate(f):\n",
    "                if i < 50:  # Look at first 50 lines for background info\n",
    "                    print(line.strip())\n",
    "                else:\n",
    "                    break\n",
    "except Exception as e:\n",
    "    print(f\"Error reading series matrix: {e}\")\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the normalized gene data shape shown in output (20124 genes, 142 samples),\n",
    "# and gene names like A1BG, A1CF, A2M, etc., we can confirm this contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# Analyzing the output from previous steps to determine rows where trait, age, and gender might be found\n",
    "\n",
    "# From the output, we need to determine rows for trait, age, and gender\n",
    "# Let's check the unique values and look for indicators of these variables\n",
    "\n",
    "# We'll set default values to None, and update if we find matches\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Define conversion functions based on what we observe in the sample characteristics\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary based on bipolar disorder status\n",
    "    value = value.lower()\n",
    "    if 'bipolar' in value or 'bp' in value or 'bd' in value:\n",
    "        return 1\n",
    "    elif 'control' in value or 'healthy' in value or 'normal' in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Try to extract numeric age value\n",
    "    try:\n",
    "        # Extract numbers from strings like \"age: 45 years\"\n",
    "        import re\n",
    "        matches = re.findall(r'\\d+', value)\n",
    "        if matches:\n",
    "            return float(matches[0])\n",
    "    except:\n",
    "        pass\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary: female=0, male=1\n",
    "    value = value.lower()\n",
    "    if 'female' in value or 'f' == value.strip():\n",
    "        return 0\n",
    "    elif 'male' in value or 'm' == value.strip():\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Based on the output and analysis, we'll define which rows contain our variables\n",
    "# The output shows \"Bipolar_disorder\" in the linked data, but values are NaN\n",
    "# We need to find the correct row in the characteristics data\n",
    "\n",
    "# Let's explore a few rows from the clinical data to find our variables\n",
    "print(\"\\nAnalyzing clinical data to find trait, age, and gender rows...\")\n",
    "\n",
    "# Since we don't have clear information, let's make educated guesses based on output\n",
    "# For the trait, we know the dataset is about Bipolar disorder from the context\n",
    "# Since the output shows a row named \"Bipolar_disorder\" with NaN values, we need to find which row contains disease status\n",
    "\n",
    "# Update rows when we find corresponding data in sample_chars\n",
    "for idx, values in sample_chars.items():\n",
    "    # Look for trait information - check for bipolar/BD/control/patient\n",
    "    values_str = ' '.join([str(v).lower() for v in values])\n",
    "    if ('bipolar' in values_str or 'bd' in values_str or 'bp' in values_str) and ('control' in values_str or 'patient' in values_str):\n",
    "        trait_row = idx\n",
    "        print(f\"Found likely trait row at index {idx}: {values}\")\n",
    "    \n",
    "    # Look for age information\n",
    "    if 'age' in values_str or any(['year' in str(v).lower() for v in values]):\n",
    "        age_row = idx\n",
    "        print(f\"Found likely age row at index {idx}: {values}\")\n",
    "    \n",
    "    # Look for gender/sex information\n",
    "    if 'gender' in values_str or 'sex' in values_str or ('male' in values_str and 'female' in values_str):\n",
    "        gender_row = idx\n",
    "        print(f\"Found likely gender row at index {idx}: {values}\")\n",
    "\n",
    "# 3. Save Metadata - initial filtering\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Extract and process clinical features\n",
    "    clinical_features_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age if age_row is not None else None,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender if gender_row is not None else None\n",
    "    )\n",
    "    \n",
    "    # Preview the results\n",
    "    preview = preview_df(clinical_features_df)\n",
    "    print(\"\\nExtracted clinical features preview:\")\n",
    "    for feature, values in preview.items():\n",
    "        print(f\"{feature}: {values[:5]}...\")\n",
    "    \n",
    "    # Save the processed clinical data\n",
    "    clinical_features_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Processed clinical data saved to {out_clinical_data_file}\")\n",
    "else:\n",
    "    print(\"No trait data available. Skipping clinical feature extraction.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}