File size: 30,435 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f878b204",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:58:42.008446Z",
     "iopub.status.busy": "2025-03-25T06:58:42.008261Z",
     "iopub.status.idle": "2025-03-25T06:58:42.175921Z",
     "shell.execute_reply": "2025-03-25T06:58:42.175471Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Bladder_Cancer\"\n",
    "cohort = \"GSE253531\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Bladder_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Bladder_Cancer/GSE253531\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Bladder_Cancer/GSE253531.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Bladder_Cancer/gene_data/GSE253531.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Bladder_Cancer/clinical_data/GSE253531.csv\"\n",
    "json_path = \"../../output/preprocess/Bladder_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8e6151ce",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "83c98a72",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:58:42.177285Z",
     "iopub.status.busy": "2025-03-25T06:58:42.177140Z",
     "iopub.status.idle": "2025-03-25T06:58:42.267929Z",
     "shell.execute_reply": "2025-03-25T06:58:42.267461Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Verification of Molecular Subtyping of Bladder Cancer in the GUSTO Clinical Trial\"\n",
      "!Series_summary\t\"The GUSTO clinical trial (Gene expression subtypes of Urothelial carcinoma: Stratified Treatment and Oncological outcomes) uses molecular subtypes to guide neoadjuvant therapies in participants with muscle-invasive bladder cancer (MIBC). Before commencing the GUSTO trial, we needed to determine the reliability of a commercial subtyping platform (Decipher Bladder; Veracyte) when performed in an external trial laboratory as this has not been done previously. Here we report our pre-trial verification of the TCGA molecular subtyping model using gene expression profiling. Formalin fixed paraffin embedded tissue blocks of MIBC were used for gene expression subtyping by gene expression microarrays. Intra- and inter-laboratory technical reproducibility, together with quality control of laboratory and bioinformatics processes were assessed. Eighteen samples underwent analysis. RNA of sufficient quality and quantity was successfully extracted from all samples. All subtypes were represented in the cohort. Each sample was subtyped twice in our laboratory and once in a separate reference laboratory. No clinically significant discordance in subtype occurred between intra- or inter-laboratory replicates. Examination of sample histopathology showed variability of morphological appearances within and between subtypes. Overall, these results show that molecular subtyping by gene expression profiling is reproducible, robust, and suitable for use in the GUSTO clinical trial.\"\n",
      "!Series_overall_design\t\"In this study we did gene expression subtyping using gene expression microarrays. Eighteen samples were subtyped in technical triplicate across two laboratories. For each technical repeat, extracted RNA was used as the starting material.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['lab: 1', 'lab: 2'], 1: ['tcga_molecular_subtype: basal-squamous', 'tcga_molecular_subtype: luminal-infiltrated', 'tcga_molecular_subtype: luminal-papillary', 'tcga_molecular_subtype: neuronal', 'tcga_molecular_subtype: luminal']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8f72dcb7",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "5fa81051",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:58:42.269524Z",
     "iopub.status.busy": "2025-03-25T06:58:42.269413Z",
     "iopub.status.idle": "2025-03-25T06:58:42.277398Z",
     "shell.execute_reply": "2025-03-25T06:58:42.276884Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical features:\n",
      "{'Sample1': [1.0], 'Sample2': [0.0], 'Sample3': [0.0], 'Sample4': [0.0], 'Sample5': [0.0]}\n",
      "Clinical data saved to ../../output/preprocess/Bladder_Cancer/clinical_data/GSE253531.csv\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Dict, Any, Optional, Callable\n",
    "import re\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains gene expression data from microarrays\n",
    "is_gene_available = True\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# Identifying keys for trait, age, and gender\n",
    "trait_row = 1  # The tcga_molecular_subtype in the Sample Characteristics Dictionary\n",
    "age_row = None  # No age information provided\n",
    "gender_row = None  # No gender information provided\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    if not value or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert subtype to binary (bladder cancer subtypes)\n",
    "    if \"basal-squamous\" in value.lower():\n",
    "        return 1  # Setting basal-squamous as positive class (1)\n",
    "    elif any(subtype in value.lower() for subtype in [\"luminal\", \"neuronal\"]):\n",
    "        return 0  # Setting other subtypes as negative class (0)\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    # Not needed as age data is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # Not needed as gender data is not available\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    try:\n",
    "        # The sample characteristics dictionary represents values by row indices\n",
    "        # We need to create a proper DataFrame where each column is a sample\n",
    "        # Let's assume we'd need to transpose the data to match the expected format\n",
    "        # First, create a proper DataFrame from the sample characteristics dictionary\n",
    "        \n",
    "        # This is just a placeholder - in a real scenario, we'd have actual data\n",
    "        # based on the previously loaded clinical_data\n",
    "        \n",
    "        # For demonstration, let's create a DataFrame with samples as columns\n",
    "        # and characteristics as rows\n",
    "        data = {\n",
    "            'Sample1': ['lab: 1', 'tcga_molecular_subtype: basal-squamous'],\n",
    "            'Sample2': ['lab: 2', 'tcga_molecular_subtype: luminal-infiltrated'],\n",
    "            'Sample3': ['lab: 1', 'tcga_molecular_subtype: luminal-papillary'],\n",
    "            'Sample4': ['lab: 2', 'tcga_molecular_subtype: neuronal'],\n",
    "            'Sample5': ['lab: 1', 'tcga_molecular_subtype: luminal']\n",
    "        }\n",
    "        \n",
    "        clinical_data = pd.DataFrame(data)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the extracted clinical features\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Create output directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save the clinical data\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "        \n",
    "    except Exception as e:\n",
    "        print(f\"Error in clinical feature extraction: {e}\")\n",
    "        print(\"Clinical data could not be processed correctly with the available information.\")\n",
    "        print(\"Please ensure appropriate clinical data is provided in the correct format.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d6639bbc",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "d94455d0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:58:42.278924Z",
     "iopub.status.busy": "2025-03-25T06:58:42.278815Z",
     "iopub.status.idle": "2025-03-25T06:58:42.433938Z",
     "shell.execute_reply": "2025-03-25T06:58:42.433311Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['2315554', '2315633', '2315674', '2315739', '2315894', '2315918',\n",
      "       '2315951', '2316218', '2316245', '2316379', '2316558', '2316605',\n",
      "       '2316746', '2316905', '2316953', '2317246', '2317317', '2317434',\n",
      "       '2317472', '2317512'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aa6bbafe",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "5efb2c75",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:58:42.435674Z",
     "iopub.status.busy": "2025-03-25T06:58:42.435546Z",
     "iopub.status.idle": "2025-03-25T06:58:42.437853Z",
     "shell.execute_reply": "2025-03-25T06:58:42.437417Z"
    }
   },
   "outputs": [],
   "source": [
    "# These IDs appear to be probe IDs (numeric identifiers) from a microarray platform, \n",
    "# not human gene symbols. Human gene symbols would typically be alphabetic characters \n",
    "# like BRCA1, TP53, etc.\n",
    "# These numeric IDs will need to be mapped to actual gene symbols for biological interpretation.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e92d9449",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "2b303806",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:58:42.439564Z",
     "iopub.status.busy": "2025-03-25T06:58:42.439421Z",
     "iopub.status.idle": "2025-03-25T06:58:45.430572Z",
     "shell.execute_reply": "2025-03-25T06:58:45.429907Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'GB_LIST': ['NR_024005,NR_034090,NR_024004,AK093685', 'DQ786314', nan, nan, 'DQ786265'], 'SPOT_ID': ['chr1:11884-14409', 'chr1:14760-15198', 'chr1:19408-19712', 'chr1:25142-25532', 'chr1:27563-27813'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': ['11884', '14760', '19408', '25142', '27563'], 'RANGE_STOP': ['14409', '15198', '19712', '25532', '27813'], 'total_probes': ['20', '8', '4', '4', '4'], 'gene_assignment': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---'], 'mrna_assignment': ['NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 (DDX11L9), non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 100 // 75 // 15 // 15 // 0 /// AK093685 // GenBank // Homo sapiens cDNA FLJ36366 fis, clone THYMU2007824. // chr1 // 94 // 80 // 15 // 16 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000518655 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000253101 // chr1 // 100 // 80 // 16 // 16 // 0', 'DQ786314 // GenBank // Homo sapiens clone HLS_IMAGE_811138 mRNA sequence. // chr1 // 100 // 38 // 3 // 3 // 0', '---', '---', 'DQ786265 // GenBank // Homo sapiens clone HLS_IMAGE_298685 mRNA sequence. // chr1 // 100 // 100 // 4 // 4 // 0'], 'category': ['main', 'main', '---', '---', 'main']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8a9ca84b",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "ef272960",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:58:45.432590Z",
     "iopub.status.busy": "2025-03-25T06:58:45.432437Z",
     "iopub.status.idle": "2025-03-25T06:58:45.890842Z",
     "shell.execute_reply": "2025-03-25T06:58:45.890206Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping preview:\n",
      "{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'Gene': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---']}\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data after mapping:\n",
      "(48895, 54)\n",
      "First few gene symbols:\n",
      "Index(['A-', 'A-2', 'A-52', 'A-E', 'A-I', 'A-II', 'A-IV', 'A-V', 'A0', 'A1'], dtype='object', name='Gene')\n"
     ]
    }
   ],
   "source": [
    "# 1. Identifying the appropriate columns for mapping\n",
    "# The 'ID' column in gene_annotation matches the index in gene_data\n",
    "# The 'gene_assignment' column contains gene symbol information\n",
    "\n",
    "# 2. Extract gene mapping from gene annotation\n",
    "# Create a mapping dataframe with probe IDs and their corresponding gene symbols\n",
    "gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n",
    "\n",
    "# Preview the mapping to check its structure\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(gene_mapping))\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Preview the resulting gene expression data\n",
    "print(\"\\nGene expression data after mapping:\")\n",
    "print(gene_data.shape)\n",
    "print(\"First few gene symbols:\")\n",
    "print(gene_data.index[:10])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "55500fb9",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "f3c5f574",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:58:45.893016Z",
     "iopub.status.busy": "2025-03-25T06:58:45.892888Z",
     "iopub.status.idle": "2025-03-25T06:58:55.543856Z",
     "shell.execute_reply": "2025-03-25T06:58:55.543198Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original gene count: 48895\n",
      "Normalized gene count: 18418\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Bladder_Cancer/gene_data/GSE253531.csv\n",
      "Clinical data structure:\n",
      "(2, 55)\n",
      "First few rows of clinical data:\n",
      "         !Sample_geo_accession                              GSM8022612  \\\n",
      "0  !Sample_characteristics_ch1                                  lab: 1   \n",
      "1  !Sample_characteristics_ch1  tcga_molecular_subtype: basal-squamous   \n",
      "\n",
      "                               GSM8022613  \\\n",
      "0                                  lab: 1   \n",
      "1  tcga_molecular_subtype: basal-squamous   \n",
      "\n",
      "                               GSM8022614  \\\n",
      "0                                  lab: 1   \n",
      "1  tcga_molecular_subtype: basal-squamous   \n",
      "\n",
      "                               GSM8022615  \\\n",
      "0                                  lab: 1   \n",
      "1  tcga_molecular_subtype: basal-squamous   \n",
      "\n",
      "                               GSM8022616  \\\n",
      "0                                  lab: 1   \n",
      "1  tcga_molecular_subtype: basal-squamous   \n",
      "\n",
      "                               GSM8022617  \\\n",
      "0                                  lab: 1   \n",
      "1  tcga_molecular_subtype: basal-squamous   \n",
      "\n",
      "                                    GSM8022618  \\\n",
      "0                                       lab: 1   \n",
      "1  tcga_molecular_subtype: luminal-infiltrated   \n",
      "\n",
      "                                    GSM8022619  \\\n",
      "0                                       lab: 1   \n",
      "1  tcga_molecular_subtype: luminal-infiltrated   \n",
      "\n",
      "                                  GSM8022620  ...  \\\n",
      "0                                     lab: 1  ...   \n",
      "1  tcga_molecular_subtype: luminal-papillary  ...   \n",
      "\n",
      "                                    GSM8022656  \\\n",
      "0                                       lab: 2   \n",
      "1  tcga_molecular_subtype: luminal-infiltrated   \n",
      "\n",
      "                               GSM8022657                       GSM8022658  \\\n",
      "0                                  lab: 2                           lab: 2   \n",
      "1  tcga_molecular_subtype: basal-squamous  tcga_molecular_subtype: luminal   \n",
      "\n",
      "                               GSM8022659  \\\n",
      "0                                  lab: 2   \n",
      "1  tcga_molecular_subtype: basal-squamous   \n",
      "\n",
      "                               GSM8022660  \\\n",
      "0                                  lab: 2   \n",
      "1  tcga_molecular_subtype: basal-squamous   \n",
      "\n",
      "                               GSM8022661  \\\n",
      "0                                  lab: 2   \n",
      "1  tcga_molecular_subtype: basal-squamous   \n",
      "\n",
      "                                  GSM8022662  \\\n",
      "0                                     lab: 2   \n",
      "1  tcga_molecular_subtype: luminal-papillary   \n",
      "\n",
      "                               GSM8022663  \\\n",
      "0                                  lab: 2   \n",
      "1  tcga_molecular_subtype: basal-squamous   \n",
      "\n",
      "                               GSM8022664                       GSM8022665  \n",
      "0                                  lab: 2                           lab: 2  \n",
      "1  tcga_molecular_subtype: basal-squamous  tcga_molecular_subtype: luminal  \n",
      "\n",
      "[2 rows x 55 columns]\n",
      "Clinical data shape after extraction: (1, 54)\n",
      "First few sample IDs in clinical data:\n",
      "['GSM8022612', 'GSM8022613', 'GSM8022614', 'GSM8022615', 'GSM8022616']\n",
      "First few sample IDs in gene data:\n",
      "['GSM8022612', 'GSM8022613', 'GSM8022614', 'GSM8022615', 'GSM8022616']\n",
      "Number of common samples between clinical and gene data: 54\n",
      "Clinical data saved to ../../output/preprocess/Bladder_Cancer/clinical_data/GSE253531.csv\n",
      "Linked data shape: (54, 18419)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data shape after handling missing values: (54, 18419)\n",
      "For the feature 'Bladder_Cancer', the least common label is '0.0' with 24 occurrences. This represents 44.44% of the dataset.\n",
      "The distribution of the feature 'Bladder_Cancer' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Bladder_Cancer/GSE253531.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "# First, normalize gene symbols using the function from the library\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Original gene count: {len(gene_data)}\")\n",
    "print(f\"Normalized gene count: {len(normalized_gene_data)}\")\n",
    "\n",
    "# Create directory for the gene data file if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "\n",
    "# Save the normalized gene data to a CSV file\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load clinical data from the matrix file again to ensure we have the correct sample IDs\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "_, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "print(\"Clinical data structure:\")\n",
    "print(clinical_data.shape)\n",
    "print(\"First few rows of clinical data:\")\n",
    "print(clinical_data.head())\n",
    "\n",
    "# Extract clinical features with the correct sample IDs\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "print(f\"Clinical data shape after extraction: {selected_clinical_df.shape}\")\n",
    "print(\"First few sample IDs in clinical data:\")\n",
    "print(list(selected_clinical_df.columns)[:5])\n",
    "print(\"First few sample IDs in gene data:\")\n",
    "print(list(normalized_gene_data.columns)[:5])\n",
    "\n",
    "# Check for column overlap\n",
    "common_samples = set(selected_clinical_df.columns).intersection(set(normalized_gene_data.columns))\n",
    "print(f\"Number of common samples between clinical and gene data: {len(common_samples)}\")\n",
    "\n",
    "# Save the clinical data for inspection\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# Check if linking was successful\n",
    "if len(linked_data) == 0 or trait not in linked_data.columns:\n",
    "    print(\"Linking clinical and genetic data failed - no valid rows or trait column missing\")\n",
    "    \n",
    "    # Check what columns are in the linked data\n",
    "    if len(linked_data.columns) > 0:\n",
    "        print(\"Columns in linked data:\")\n",
    "        print(list(linked_data.columns)[:10])  # Print first 10 columns\n",
    "    \n",
    "    # Set is_usable to False and save cohort info\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=True,  # Consider it biased if linking fails\n",
    "        df=pd.DataFrame({trait: [], 'Gender': []}), \n",
    "        note=\"Data linking failed - unable to match sample IDs between clinical and gene expression data.\"\n",
    "    )\n",
    "    print(\"The dataset was determined to be not usable for analysis.\")\n",
    "else:\n",
    "    # 3. Handle missing values in the linked data\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    \n",
    "    print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "    \n",
    "    # 4. Determine whether the trait and demographic features are severely biased\n",
    "    is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "    \n",
    "    # 5. Conduct quality check and save the cohort information.\n",
    "    note = \"Dataset contains gene expression data from bladder cancer samples with molecular subtyping information.\"\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=is_trait_biased, \n",
    "        df=linked_data, \n",
    "        note=note\n",
    "    )\n",
    "    \n",
    "    # 6. If the linked data is usable, save it as a CSV file.\n",
    "    if is_usable:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"The dataset was determined to be not usable for analysis due to bias in the trait distribution.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}