File size: 15,439 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "806d6fc3",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Bone_Density\"\n",
    "cohort = \"GSE56815\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Bone_Density\"\n",
    "in_cohort_dir = \"../../input/GEO/Bone_Density/GSE56815\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Bone_Density/GSE56815.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Bone_Density/gene_data/GSE56815.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Bone_Density/clinical_data/GSE56815.csv\"\n",
    "json_path = \"../../output/preprocess/Bone_Density/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0bdd62c3",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8d443bba",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "83fa5598",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "12b83518",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains gene expression data from Affymetrix arrays\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For trait (bone mineral density): available at index 1\n",
    "trait_row = 1\n",
    "# For age: not available in the sample characteristics\n",
    "age_row = None\n",
    "# For gender: all subjects are female (constant), so we consider it not available\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert bone mineral density values to binary (0 for low BMD, 1 for high BMD)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the value part after the colon if present\n",
    "    if isinstance(value, str) and ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if isinstance(value, str):\n",
    "        value = value.lower()\n",
    "        if 'high' in value:\n",
    "            return 1\n",
    "        elif 'low' in value:\n",
    "            return 0\n",
    "    \n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to continuous numbers\"\"\"\n",
    "    # Not used as age data is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender values to binary (0 for female, 1 for male)\"\"\"\n",
    "    # Not used as gender data is not available\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata - Initial Filtering\n",
    "# Since trait_row is not None, trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait data is available, extract clinical features\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features using the library function\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of extracted clinical data:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the extracted clinical data to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f7254b68",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "efb5a1b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0cca0231",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d492fa14",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Analyze the gene identifiers in the index\n",
    "# Looking at the identifiers like '1007_s_at', '1053_at', etc.\n",
    "# These appear to be probe IDs from Affymetrix microarrays, not standard human gene symbols\n",
    "\n",
    "# Probe IDs in the format of '1007_s_at' are typical for Affymetrix platforms\n",
    "# They need to be mapped to human gene symbols for meaningful analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0a4c48bd",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e00bf63e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a2b8a7c0",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5a797bdb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify columns in gene annotation data that contain probe IDs and gene symbols\n",
    "# From the preview, we can see that 'ID' contains probe IDs like '1007_s_at'\n",
    "# and 'Gene Symbol' contains the gene symbols like 'DDR1 /// MIR4640'\n",
    "probe_col = 'ID'\n",
    "gene_col = 'Gene Symbol'\n",
    "\n",
    "# 2. Get gene mapping dataframe using the get_gene_mapping function from the library\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)\n",
    "\n",
    "# 3. Convert probe-level measurements to gene-level expression by applying the mapping\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Print information about the resulting gene expression dataframe\n",
    "print(f\"Number of genes after mapping: {len(gene_data)}\")\n",
    "print(\"First 10 gene symbols:\")\n",
    "print(gene_data.index[:10])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "81dd8993",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "86cfadfc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the previously saved clinical data\n",
    "clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "print(\"Clinical data structure:\")\n",
    "print(clinical_df.head())\n",
    "\n",
    "# Get trait column name (actual name in the DataFrame)\n",
    "trait_column = clinical_df.columns[0]  # First column should be Bone_Density\n",
    "\n",
    "# Create a DataFrame with correct structure for geo_link_clinical_genetic_data\n",
    "# The function expects clinical_df to have features as rows and samples as columns\n",
    "clinical_df_for_linking = pd.DataFrame(clinical_df[trait_column].values[None, :], \n",
    "                                      index=[trait], \n",
    "                                      columns=clinical_df.index)\n",
    "print(\"Clinical data prepared for linking:\")\n",
    "print(clinical_df_for_linking.head())\n",
    "\n",
    "# Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_df_for_linking, normalized_gene_data)\n",
    "\n",
    "# For analysis functions, we need samples as rows and features as columns\n",
    "linked_data_for_analysis = linked_data.T\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data_for_analysis = handle_missing_values(linked_data_for_analysis, trait)\n",
    "\n",
    "# 4. Determine whether the trait and demographic features are severely biased\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_for_analysis, trait)\n",
    "\n",
    "# 5. Conduct final quality validation and save cohort info\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression from blood monocytes in pre- and postmenopausal females with low or high bone mineral density.\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as CSV\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "71f31bb3",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9cb75063",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the previously saved clinical data and prepare for linking\n",
    "# Read the clinical data without setting index_col to avoid issues\n",
    "clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "\n",
    "# Get the structure of the clinical data to understand column names\n",
    "print(\"Clinical data columns:\", clinical_df.columns.tolist())\n",
    "print(\"Clinical data shape:\", clinical_df.shape)\n",
    "\n",
    "# Transform clinical data to have the correct format for linking\n",
    "# The clinical data appears to have samples as columns with the trait value in each row 0\n",
    "sample_names = clinical_df.columns.tolist()\n",
    "trait_values = clinical_df.iloc[0].tolist()\n",
    "clinical_df_transformed = pd.DataFrame({trait: trait_values}, index=sample_names)\n",
    "\n",
    "# Link clinical and genetic data\n",
    "linked_data = pd.merge(clinical_df_transformed, normalized_gene_data.T, \n",
    "                      left_index=True, right_index=True)\n",
    "\n",
    "# Check the structure of the linked data\n",
    "print(\"Linked data shape:\", linked_data.shape)\n",
    "print(\"Linked data columns include trait column?\", trait in linked_data.columns)\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "\n",
    "# 4. Determine whether the trait and some demographic features are severely biased\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct final quality validation and save relevant information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression from blood monocytes in pre- and postmenopausal females with low or high bone mineral density.\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as CSV\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}