File size: 15,439 Bytes
f88156f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "806d6fc3",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Bone_Density\"\n",
"cohort = \"GSE56815\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Bone_Density\"\n",
"in_cohort_dir = \"../../input/GEO/Bone_Density/GSE56815\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Bone_Density/GSE56815.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Bone_Density/gene_data/GSE56815.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Bone_Density/clinical_data/GSE56815.csv\"\n",
"json_path = \"../../output/preprocess/Bone_Density/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "0bdd62c3",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8d443bba",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "83fa5598",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "12b83518",
"metadata": {},
"outputs": [],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains gene expression data from Affymetrix arrays\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# For trait (bone mineral density): available at index 1\n",
"trait_row = 1\n",
"# For age: not available in the sample characteristics\n",
"age_row = None\n",
"# For gender: all subjects are female (constant), so we consider it not available\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert bone mineral density values to binary (0 for low BMD, 1 for high BMD)\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract the value part after the colon if present\n",
" if isinstance(value, str) and ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if isinstance(value, str):\n",
" value = value.lower()\n",
" if 'high' in value:\n",
" return 1\n",
" elif 'low' in value:\n",
" return 0\n",
" \n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age values to continuous numbers\"\"\"\n",
" # Not used as age data is not available\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender values to binary (0 for female, 1 for male)\"\"\"\n",
" # Not used as gender data is not available\n",
" return None\n",
"\n",
"# 3. Save Metadata - Initial Filtering\n",
"# Since trait_row is not None, trait data is available\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait data is available, extract clinical features\n",
"if trait_row is not None:\n",
" # Extract clinical features using the library function\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical data\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of extracted clinical data:\")\n",
" print(preview)\n",
" \n",
" # Save the extracted clinical data to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "f7254b68",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "efb5a1b6",
"metadata": {},
"outputs": [],
"source": [
"# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "0cca0231",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d492fa14",
"metadata": {},
"outputs": [],
"source": [
"# Analyze the gene identifiers in the index\n",
"# Looking at the identifiers like '1007_s_at', '1053_at', etc.\n",
"# These appear to be probe IDs from Affymetrix microarrays, not standard human gene symbols\n",
"\n",
"# Probe IDs in the format of '1007_s_at' are typical for Affymetrix platforms\n",
"# They need to be mapped to human gene symbols for meaningful analysis\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "0a4c48bd",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e00bf63e",
"metadata": {},
"outputs": [],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "a2b8a7c0",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a797bdb",
"metadata": {},
"outputs": [],
"source": [
"# 1. Identify columns in gene annotation data that contain probe IDs and gene symbols\n",
"# From the preview, we can see that 'ID' contains probe IDs like '1007_s_at'\n",
"# and 'Gene Symbol' contains the gene symbols like 'DDR1 /// MIR4640'\n",
"probe_col = 'ID'\n",
"gene_col = 'Gene Symbol'\n",
"\n",
"# 2. Get gene mapping dataframe using the get_gene_mapping function from the library\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)\n",
"\n",
"# 3. Convert probe-level measurements to gene-level expression by applying the mapping\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Print information about the resulting gene expression dataframe\n",
"print(f\"Number of genes after mapping: {len(gene_data)}\")\n",
"print(\"First 10 gene symbols:\")\n",
"print(gene_data.index[:10])\n"
]
},
{
"cell_type": "markdown",
"id": "81dd8993",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "86cfadfc",
"metadata": {},
"outputs": [],
"source": [
"# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Load the previously saved clinical data\n",
"clinical_df = pd.read_csv(out_clinical_data_file)\n",
"print(\"Clinical data structure:\")\n",
"print(clinical_df.head())\n",
"\n",
"# Get trait column name (actual name in the DataFrame)\n",
"trait_column = clinical_df.columns[0] # First column should be Bone_Density\n",
"\n",
"# Create a DataFrame with correct structure for geo_link_clinical_genetic_data\n",
"# The function expects clinical_df to have features as rows and samples as columns\n",
"clinical_df_for_linking = pd.DataFrame(clinical_df[trait_column].values[None, :], \n",
" index=[trait], \n",
" columns=clinical_df.index)\n",
"print(\"Clinical data prepared for linking:\")\n",
"print(clinical_df_for_linking.head())\n",
"\n",
"# Link clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(clinical_df_for_linking, normalized_gene_data)\n",
"\n",
"# For analysis functions, we need samples as rows and features as columns\n",
"linked_data_for_analysis = linked_data.T\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"linked_data_for_analysis = handle_missing_values(linked_data_for_analysis, trait)\n",
"\n",
"# 4. Determine whether the trait and demographic features are severely biased\n",
"is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_for_analysis, trait)\n",
"\n",
"# 5. Conduct final quality validation and save cohort info\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=\"Dataset contains gene expression from blood monocytes in pre- and postmenopausal females with low or high bone mineral density.\"\n",
")\n",
"\n",
"# 6. If the linked data is usable, save it as CSV\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Data was determined to be unusable and was not saved\")\n"
]
},
{
"cell_type": "markdown",
"id": "71f31bb3",
"metadata": {},
"source": [
"### Step 8: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9cb75063",
"metadata": {},
"outputs": [],
"source": [
"# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Load the previously saved clinical data and prepare for linking\n",
"# Read the clinical data without setting index_col to avoid issues\n",
"clinical_df = pd.read_csv(out_clinical_data_file)\n",
"\n",
"# Get the structure of the clinical data to understand column names\n",
"print(\"Clinical data columns:\", clinical_df.columns.tolist())\n",
"print(\"Clinical data shape:\", clinical_df.shape)\n",
"\n",
"# Transform clinical data to have the correct format for linking\n",
"# The clinical data appears to have samples as columns with the trait value in each row 0\n",
"sample_names = clinical_df.columns.tolist()\n",
"trait_values = clinical_df.iloc[0].tolist()\n",
"clinical_df_transformed = pd.DataFrame({trait: trait_values}, index=sample_names)\n",
"\n",
"# Link clinical and genetic data\n",
"linked_data = pd.merge(clinical_df_transformed, normalized_gene_data.T, \n",
" left_index=True, right_index=True)\n",
"\n",
"# Check the structure of the linked data\n",
"print(\"Linked data shape:\", linked_data.shape)\n",
"print(\"Linked data columns include trait column?\", trait in linked_data.columns)\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"\n",
"# 4. Determine whether the trait and some demographic features are severely biased\n",
"is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Conduct final quality validation and save relevant information\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=\"Dataset contains gene expression from blood monocytes in pre- and postmenopausal females with low or high bone mineral density.\"\n",
")\n",
"\n",
"# 6. If the linked data is usable, save it as CSV\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Data was determined to be unusable and was not saved\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|