File size: 5,285 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "867a0852",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:37:09.128009Z",
     "iopub.status.busy": "2025-03-25T08:37:09.127801Z",
     "iopub.status.idle": "2025-03-25T08:37:09.293735Z",
     "shell.execute_reply": "2025-03-25T08:37:09.293208Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Cystic_Fibrosis\"\n",
    "\n",
    "# Input paths\n",
    "tcga_root_dir = \"../../input/TCGA\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Cystic_Fibrosis/TCGA.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Cystic_Fibrosis/gene_data/TCGA.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Cystic_Fibrosis/clinical_data/TCGA.csv\"\n",
    "json_path = \"../../output/preprocess/Cystic_Fibrosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "75541007",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "a4a86602",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:37:09.295593Z",
     "iopub.status.busy": "2025-03-25T08:37:09.295444Z",
     "iopub.status.idle": "2025-03-25T08:37:09.301709Z",
     "shell.execute_reply": "2025-03-25T08:37:09.301192Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "No suitable directory found for Cystic_Fibrosis.\n",
      "Skipping this trait as no suitable data was found.\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "\n",
    "# 1. Find the most relevant directory for Colon and Rectal Cancer\n",
    "subdirectories = os.listdir(tcga_root_dir)\n",
    "target_trait = trait.lower().replace(\"_\", \" \")  # Convert to lowercase for case-insensitive matching\n",
    "\n",
    "# Start with no match, then find the best match based on similarity to target trait\n",
    "best_match = None\n",
    "best_match_score = 0\n",
    "\n",
    "for subdir in subdirectories:\n",
    "    subdir_lower = subdir.lower()\n",
    "    \n",
    "    # Calculate a simple similarity score - more matching words = better match\n",
    "    # This prioritizes exact matches over partial matches\n",
    "    score = 0\n",
    "    for word in target_trait.split():\n",
    "        if word in subdir_lower:\n",
    "            score += 1\n",
    "    \n",
    "    # Track the best match\n",
    "    if score > best_match_score:\n",
    "        best_match_score = score\n",
    "        best_match = subdir\n",
    "        print(f\"Found potential match: {subdir} (score: {score})\")\n",
    "\n",
    "# Use the best match if found\n",
    "if best_match:\n",
    "    print(f\"Selected directory: {best_match}\")\n",
    "    \n",
    "    # 2. Get the clinical and genetic data file paths\n",
    "    cohort_dir = os.path.join(tcga_root_dir, best_match)\n",
    "    clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n",
    "    \n",
    "    print(f\"Clinical file: {os.path.basename(clinical_file_path)}\")\n",
    "    print(f\"Genetic file: {os.path.basename(genetic_file_path)}\")\n",
    "    \n",
    "    # 3. Load the data files\n",
    "    clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n",
    "    genetic_df = pd.read_csv(genetic_file_path, sep='\\t', index_col=0)\n",
    "    \n",
    "    # 4. Print clinical data columns for inspection\n",
    "    print(\"\\nClinical data columns:\")\n",
    "    print(clinical_df.columns.tolist())\n",
    "    \n",
    "    # Print basic information about the datasets\n",
    "    print(f\"\\nClinical data shape: {clinical_df.shape}\")\n",
    "    print(f\"Genetic data shape: {genetic_df.shape}\")\n",
    "    \n",
    "    # Check if we have both gene and trait data\n",
    "    is_gene_available = genetic_df.shape[0] > 0\n",
    "    is_trait_available = clinical_df.shape[0] > 0\n",
    "    \n",
    "else:\n",
    "    print(f\"No suitable directory found for {trait}.\")\n",
    "    is_gene_available = False\n",
    "    is_trait_available = False\n",
    "\n",
    "# Record the data availability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=\"TCGA\",\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Exit if no suitable directory was found\n",
    "if not best_match:\n",
    "    print(\"Skipping this trait as no suitable data was found.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}