File size: 17,102 Bytes
58f02a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bcb53b17",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Acute_Myeloid_Leukemia\"\n",
    "cohort = \"GSE222169\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Acute_Myeloid_Leukemia\"\n",
    "in_cohort_dir = \"../../input/GEO/Acute_Myeloid_Leukemia/GSE222169\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/GSE222169.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE222169.csv\"\n",
    "json_path = \"../../output/preprocess/Acute_Myeloid_Leukemia/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5df0c22f",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1d3c3abe",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a93884e5",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b126ed26",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# Examine the background information and sample characteristics\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the series title \"Mitochondrial fusion is a therapeutic vulnerability of acute myeloid leukemia\"\n",
    "# and the sample characteristics showing cell lines and patient samples with AML,\n",
    "# this appears to be gene expression data rather than miRNA or methylation data.\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# Checking the sample characteristics dictionary for trait, age, and gender\n",
    "\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (AML status)\n",
    "# Row 0 contains 'cell line: MOLM-14', 'cell line: OCI-AML2', 'tissue source: patient with AML'\n",
    "# All samples are AML samples (constant), but this is still useful for our trait identification\n",
    "trait_row = 0  \n",
    "\n",
    "# For age\n",
    "# There's no age information available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# For gender\n",
    "# There's no gender information available in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert trait values to binary format.\n",
    "    1 = AML, 0 = Non-AML\n",
    "    \"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if it exists\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # All samples appear to be from AML cell lines or patients\n",
    "    if 'AML' in value or 'leukemia' in value.lower():\n",
    "        return 1\n",
    "    return None  # Return None for uncertain cases\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"\n",
    "    Convert age values to continuous format.\n",
    "    This function is not used since age data is not available.\n",
    "    \"\"\"\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"\n",
    "    Convert gender values to binary format: 0 = female, 1 = male\n",
    "    This function is not used since gender data is not available.\n",
    "    \"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata - Initial Filtering\n",
    "# Trait data is available since trait_row is not None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "if trait_row is not None:\n",
    "    try:\n",
    "        # Create a DataFrame from the sample characteristics dictionary provided in previous output\n",
    "        sample_chars = {\n",
    "            0: ['cell line: MOLM-14', 'cell line: OCI-AML2', 'tissue source: patient with AML'],\n",
    "            1: ['cell type: leukemia cell line', 'genotype: OE_EMPTY', 'genotype: OE_MFN2', 'genotype: shCTL', 'genotype: shMFN2', 'genotype: shOPA1'],\n",
    "            2: ['treatment: shCTL_72h', 'treatment: shMFN2_72h', None]\n",
    "        }\n",
    "        \n",
    "        # Convert the dictionary to a DataFrame format compatible with geo_select_clinical_features\n",
    "        # First, create a list of all unique sample IDs from all rows\n",
    "        all_samples = []\n",
    "        for row, values in sample_chars.items():\n",
    "            for val in values:\n",
    "                if val is not None and not pd.isna(val):\n",
    "                    all_samples.append(val)\n",
    "        \n",
    "        # Create a DataFrame with samples as columns\n",
    "        clinical_data = pd.DataFrame(index=range(len(sample_chars)), columns=all_samples)\n",
    "        \n",
    "        # Fill the DataFrame with sample values\n",
    "        for row, values in sample_chars.items():\n",
    "            for val in values:\n",
    "                if val is not None and not pd.isna(val):\n",
    "                    clinical_data.loc[row, val] = val\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the extracted clinical features\n",
    "        preview = preview_df(selected_clinical)\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Save the extracted clinical features\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        selected_clinical.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error extracting clinical features: {e}\")\n",
    "        print(\"Clinical data extraction was skipped due to an error.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bee581ea",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "00c67a80",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f08756d0",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b909498b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# These identifiers (\"TC0100006437.hg.1\", etc.) are not standard human gene symbols\n",
    "# They appear to be probe IDs from a microarray platform, likely Affymetrix or Thermo Fisher\n",
    "# These need to be mapped to standard gene symbols for biological interpretation\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c6aba98f",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ccd3c00a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1d94bbf3",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d9a5b416",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Looking at the gene annotation dictionary and the gene identifiers in the expression data\n",
    "# The 'ID' column in gene_annotation matches the index in gene_data (e.g., \"TC0100006437.hg.1\")\n",
    "# The gene symbols need to be extracted from the 'SPOT_ID.1' column which contains detailed annotation information\n",
    "\n",
    "# 1. Determine the columns for mapping\n",
    "prob_col = 'ID'  # This column contains the probe IDs matching our gene expression data\n",
    "gene_col = 'SPOT_ID.1'  # This column contains gene information including symbols\n",
    "\n",
    "# 2. Get the gene mapping dataframe\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "\n",
    "# 3. Apply gene mapping to convert probe measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Preview the first few rows of the gene expression data after mapping\n",
    "print(\"Preview of gene expression data after mapping:\")\n",
    "print(gene_data.head())\n",
    "print(\"Number of genes in the mapped data:\", len(gene_data))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "18de0822",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "612808c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Analyze the clinical data structure more carefully\n",
    "print(\"Clinical data shape:\", clinical_data.shape)\n",
    "print(\"Clinical data columns:\", clinical_data.columns)\n",
    "print(\"Clinical data index:\", clinical_data.index)\n",
    "\n",
    "# Examine the first few rows to understand the data structure\n",
    "print(\"First few rows of clinical data:\")\n",
    "print(clinical_data.iloc[:, :5].head())  # Show only first 5 columns for brevity\n",
    "\n",
    "# Extract relevant information for creating a more appropriate clinical feature dataframe\n",
    "# Based on the GSE series information, this dataset is about mitochondrial fusion in AML\n",
    "# We'll create a new clinical data approach by directly processing column names\n",
    "\n",
    "# Get sample IDs from the gene expression data\n",
    "sample_ids = normalized_gene_data.columns.tolist()\n",
    "\n",
    "# Create a trait dataframe using the GSM IDs as sample identifiers\n",
    "# Since we're interested in MFN2 treatment effects, we'll use column names that contain relevant identifiers\n",
    "trait_values = []\n",
    "for sample_id in sample_ids:\n",
    "    # Default to None\n",
    "    trait_value = None\n",
    "    \n",
    "    # Check if the sample ID is in clinical_data columns\n",
    "    if sample_id in clinical_data.columns:\n",
    "        # Look at the treatment row (index 2)\n",
    "        cell_value = clinical_data.loc[2, sample_id]\n",
    "        if isinstance(cell_value, str):\n",
    "            if 'shMFN2' in cell_value:\n",
    "                trait_value = 1\n",
    "            elif 'shCTL' in cell_value:\n",
    "                trait_value = 0\n",
    "    \n",
    "    trait_values.append(trait_value)\n",
    "\n",
    "# Create a DataFrame with the trait values\n",
    "trait_df = pd.DataFrame({trait: trait_values}, index=sample_ids)\n",
    "print(\"Trait dataframe preview:\")\n",
    "print(trait_df.head())\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "trait_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link the clinical and genetic data\n",
    "linked_data = pd.concat([trait_df.T, normalized_gene_data], axis=0)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# If we still have data after handling missing values\n",
    "if linked_data.shape[0] > 0:\n",
    "    # Determine whether the trait and some demographic features are severely biased\n",
    "    is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "    # Conduct quality check and save the cohort information\n",
    "    note = \"Dataset contains AML cell lines with different treatments. Trait was defined as shMFN2 knockdown (1) vs shCTL control (0).\"\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=is_trait_biased, \n",
    "        df=unbiased_linked_data,\n",
    "        note=note\n",
    "    )\n",
    "\n",
    "    # If the linked data is usable, save it\n",
    "    if is_usable:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        unbiased_linked_data.to_csv(out_data_file)\n",
    "        print(f\"Processed dataset saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"Dataset not usable due to bias in trait distribution. Data not saved.\")\n",
    "else:\n",
    "    # Record that this dataset is not usable due to insufficient trait data\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=None,\n",
    "        df=pd.DataFrame(),\n",
    "        note=\"No samples with valid trait values remained after filtering\"\n",
    "    )\n",
    "    print(\"Dataset marked as not usable due to insufficient trait data after filtering.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}