File size: 42,910 Bytes
58f02a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "b568547a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:18:42.532672Z",
"iopub.status.busy": "2025-03-25T06:18:42.532294Z",
"iopub.status.idle": "2025-03-25T06:18:42.698164Z",
"shell.execute_reply": "2025-03-25T06:18:42.697760Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Acute_Myeloid_Leukemia\"\n",
"cohort = \"GSE249638\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Acute_Myeloid_Leukemia\"\n",
"in_cohort_dir = \"../../input/GEO/Acute_Myeloid_Leukemia/GSE249638\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv\"\n",
"json_path = \"../../output/preprocess/Acute_Myeloid_Leukemia/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "fda2805c",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "de791842",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:18:42.699624Z",
"iopub.status.busy": "2025-03-25T06:18:42.699478Z",
"iopub.status.idle": "2025-03-25T06:18:42.864864Z",
"shell.execute_reply": "2025-03-25T06:18:42.864298Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"IL-9 secreted by leukemia stem cells induces Th1-skewed CD4+ T cells, which promote their expansion\"\n",
"!Series_summary\t\"We performed a comprehensive transcriptomic profiling of BM-infiltrating CD4+ T cells of AML patients from different AML patients and controls. This analysis revealed that BM-infiltrating CD4+ T cells are activated and skewed towards Th1 polarization.\"\n",
"!Series_overall_design\t\"We characterized the molecular signature of BM-infiltrating CD4+ T cells in patients with acute myeloid leukemia (AML) compared to control subjects.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['patient id: AML-1', 'patient id: AML-2', 'patient id: AML-3', 'patient id: AML-4', 'patient id: AML-5', 'patient id: AML-6', 'patient id: AML-7', 'patient id: AML-8', 'patient id: AML-9', 'patient id: AML-10', 'patient id: AML-11', 'patient id: AML-12', 'patient id: AML-13', 'patient id: AML-14', 'patient id: AML-15', 'patient id: AML-16', 'patient id: AML-17', 'patient id: AML-18', 'patient id: AML-19', 'patient id: AML-20', 'patient id: AML-21', 'patient id: AML-22', 'patient id: AML-23', 'patient id: AML-24', 'patient id: AML-25', 'patient id: AML-26', 'patient id: AML-27', 'patient id: AML-28', 'patient id: AML-29', 'patient id: AML-30'], 1: ['disease: acute myeloid leukemia', 'disease: healthy control'], 2: ['cell type: CD4 T cells']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "d6f82ba5",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6dc69f9f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:18:42.866141Z",
"iopub.status.busy": "2025-03-25T06:18:42.866028Z",
"iopub.status.idle": "2025-03-25T06:18:42.870838Z",
"shell.execute_reply": "2025-03-25T06:18:42.870409Z"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"import json\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"is_gene_available = True # Based on Series_title and Series_summary, this dataset contains transcriptomic profiling data\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"trait_row = 1 # The \"disease\" row contains trait information (AML vs healthy control)\n",
"age_row = None # No age information available in the sample characteristics\n",
"gender_row = None # No gender information available in the sample characteristics\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" if value is None:\n",
" return None\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" if 'acute myeloid leukemia' in value.lower() or 'aml' in value.lower():\n",
" return 1\n",
" elif 'healthy' in value.lower() or 'control' in value.lower():\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" # Not used but defined for completeness\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" # Not used but defined for completeness\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Load the clinical data\n",
" clinical_data_path = os.path.join(in_cohort_dir, \"clinical_data.csv\")\n",
" if os.path.exists(clinical_data_path):\n",
" clinical_data = pd.read_csv(clinical_data_path)\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the dataframe\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Clinical data preview:\", preview)\n",
" \n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save to CSV\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "8dcbe8ad",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e502790e",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:18:42.871985Z",
"iopub.status.busy": "2025-03-25T06:18:42.871873Z",
"iopub.status.idle": "2025-03-25T06:18:43.087833Z",
"shell.execute_reply": "2025-03-25T06:18:43.087425Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['2824546_st', '2824549_st', '2824551_st', '2824554_st', '2827992_st',\n",
" '2827995_st', '2827996_st', '2828010_st', '2828012_st', '2835442_st',\n",
" '2835447_st', '2835453_st', '2835456_st', '2835459_st', '2835461_st',\n",
" '2839509_st', '2839511_st', '2839513_st', '2839515_st', '2839517_st'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "f824cae5",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1c9e9cbf",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:18:43.089205Z",
"iopub.status.busy": "2025-03-25T06:18:43.089072Z",
"iopub.status.idle": "2025-03-25T06:18:43.091294Z",
"shell.execute_reply": "2025-03-25T06:18:43.090897Z"
}
},
"outputs": [],
"source": [
"# Examine the gene identifiers\n",
"# These appear to be probe IDs from a microarray platform, not standard human gene symbols\n",
"# They follow a numeric format with \"_st\" suffix which is characteristic of certain microarray platforms\n",
"# Standard human gene symbols would be alphanumeric like \"TP53\", \"BRCA1\", etc.\n",
"\n",
"# These identifiers need to be mapped to proper gene symbols for meaningful biological interpretation\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "303ec07c",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "78b41665",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:18:43.092387Z",
"iopub.status.busy": "2025-03-25T06:18:43.092274Z",
"iopub.status.idle": "2025-03-25T06:18:48.824450Z",
"shell.execute_reply": "2025-03-25T06:18:48.823783Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'probeset_id': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'strand': ['+', '+', '+', '+', '+'], 'start': ['11869', '29554', '69091', '160446', '317811'], 'stop': ['14409', '31109', '70008', '161525', '328581'], 'total_probes': [49.0, 60.0, 30.0, 30.0, 191.0], 'gene_assignment': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000456328 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102', 'ENST00000408384 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000408384 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000408384 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000408384 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000469289 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000469289 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000469289 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000469289 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// OTTHUMT00000002841 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002841 // RP11-34P13.3 // NULL // --- // --- /// OTTHUMT00000002840 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002840 // RP11-34P13.3 // NULL // --- // ---', 'NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// OTTHUMT00000003223 // OR4F5 // NULL // --- // ---', 'OTTHUMT00000007169 // OTTHUMG00000002525 // NULL // --- // --- /// OTTHUMT00000007169 // RP11-34P13.9 // NULL // --- // ---', 'NR_028322 // LOC100132287 // uncharacterized LOC100132287 // 1p36.33 // 100132287 /// NR_028327 // LOC100133331 // uncharacterized LOC100133331 // 1p36.33 // 100133331 /// ENST00000425496 // LOC101060495 // uncharacterized LOC101060495 // --- // 101060495 /// ENST00000425496 // LOC101060494 // uncharacterized LOC101060494 // --- // 101060494 /// ENST00000425496 // LOC101059936 // uncharacterized LOC101059936 // --- // 101059936 /// ENST00000425496 // LOC100996502 // uncharacterized LOC100996502 // --- // 100996502 /// ENST00000425496 // LOC100996328 // uncharacterized LOC100996328 // --- // 100996328 /// ENST00000425496 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// NR_028325 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// OTTHUMT00000346878 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346878 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346879 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346879 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346880 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346880 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346881 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346881 // RP4-669L17.10 // NULL // --- // ---'], 'mrna_assignment': ['NR_046018 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 (DDX11L1), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aaa.3 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxq.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxr.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000408384 // ENSEMBL // ncrna:miRNA chromosome:GRCh37:1:30366:30503:1 gene:ENSG00000221311 gene_biotype:miRNA transcript_biotype:miRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000469289 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:30267:31109:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000473358 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:29554:31097:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002841 // Havana transcript // cdna:all chromosome:VEGA52:1:30267:31109:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002840 // Havana transcript // cdna:all chromosome:VEGA52:1:29554:31097:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0', 'NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000335137 // ENSEMBL // cdna:known chromosome:GRCh37:1:69091:70008:1 gene:ENSG00000186092 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aal.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000003223 // Havana transcript // cdna:all chromosome:VEGA52:1:69091:70008:1 Gene:OTTHUMG00000001094 // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000496488 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:160446:161525:1 gene:ENSG00000241599 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000007169 // Havana transcript // cdna:all chromosome:VEGA52:1:160446:161525:1 Gene:OTTHUMG00000002525 // chr1 // 100 // 100 // 0 // --- // 0', 'NR_028322 // RefSeq // Homo sapiens uncharacterized LOC100132287 (LOC100132287), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028327 // RefSeq // Homo sapiens uncharacterized LOC100133331 (LOC100133331), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000425496 // ENSEMBL // ensembl:lincRNA chromosome:GRCh37:1:324756:328453:1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000426316 // ENSEMBL // [retired] cdna:known chromosome:GRCh37:1:317811:328455:1 gene:ENSG00000240876 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028325 // RefSeq // Homo sapiens uncharacterized LOC100132062 (LOC100132062), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// uc009vjk.2 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oeh.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oei.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346906 // Havana transcript // [retired] cdna:all chromosome:VEGA50:1:317811:328455:1 Gene:OTTHUMG00000156972 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346878 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:321056:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346879 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:324461:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346880 // Havana transcript // cdna:all chromosome:VEGA52:1:317720:324873:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346881 // Havana transcript // cdna:all chromosome:VEGA52:1:322672:324955:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0'], 'swissprot': ['NR_046018 // B7ZGX0 /// NR_046018 // B7ZGX2 /// NR_046018 // B7ZGX7 /// NR_046018 // B7ZGX8 /// ENST00000456328 // B7ZGX0 /// ENST00000456328 // B7ZGX2 /// ENST00000456328 // B7ZGX3 /// ENST00000456328 // B7ZGX7 /// ENST00000456328 // B7ZGX8 /// ENST00000456328 // Q6ZU42', '---', 'NM_001005484 // Q8NH21 /// ENST00000335137 // Q8NH21', '---', 'NR_028325 // B4DYM5 /// NR_028325 // B4E0H4 /// NR_028325 // B4E3X0 /// NR_028325 // B4E3X2 /// NR_028325 // Q6ZQS4'], 'unigene': ['NR_046018 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.719844 // brain| testis| normal /// ENST00000456328 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.618434 // testis| normal', 'ENST00000469289 // Hs.622486 // eye| normal| adult /// ENST00000469289 // Hs.729632 // testis| normal /// ENST00000469289 // Hs.742718 // testis /// ENST00000473358 // Hs.622486 // eye| normal| adult /// ENST00000473358 // Hs.729632 // testis| normal /// ENST00000473358 // Hs.742718 // testis', 'NM_001005484 // Hs.554500 // --- /// ENST00000335137 // Hs.554500 // ---', '---', 'NR_028322 // Hs.446409 // adrenal gland| blood| bone| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| lymph node| mouth| pharynx| placenta| prostate| skin| testis| thymus| thyroid| uterus| bladder carcinoma| chondrosarcoma| colorectal tumor| germ cell tumor| head and neck tumor| kidney tumor| leukemia| lung tumor| normal| primitive neuroectodermal tumor of the CNS| uterine tumor|embryoid body| blastocyst| fetus| neonate| adult /// NR_028327 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000425496 // Hs.744556 // mammary gland| normal| adult /// ENST00000425496 // Hs.660700 // eye| placenta| testis| normal| adult /// ENST00000425496 // Hs.518952 // blood| brain| intestine| lung| mammary gland| mouth| muscle| pharynx| placenta| prostate| spleen| testis| thymus| thyroid| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| prostate cancer| fetus| adult /// ENST00000425496 // Hs.742131 // testis| normal| adult /// ENST00000425496 // Hs.636102 // uterus| uterine tumor /// ENST00000425496 // Hs.646112 // brain| intestine| larynx| lung| mouth| prostate| testis| thyroid| colorectal tumor| head and neck tumor| lung tumor| normal| prostate cancer| adult /// ENST00000425496 // Hs.647795 // brain| lung| lung tumor| adult /// ENST00000425496 // Hs.684307 // --- /// ENST00000425496 // Hs.720881 // testis| normal /// ENST00000425496 // Hs.729353 // brain| lung| placenta| testis| trachea| lung tumor| normal| fetus| adult /// ENST00000425496 // Hs.735014 // ovary| ovarian tumor /// NR_028325 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| kidney tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult'], 'category': ['main', 'main', 'main', 'main', 'main'], 'locus type': ['Coding', 'Coding', 'Coding', 'Coding', 'Coding'], 'notes': ['---', '---', '---', '---', '2 retired transcript(s) from ENSEMBL, Havana transcript'], 'SPOT_ID': ['chr1(+):11869-14409', 'chr1(+):29554-31109', 'chr1(+):69091-70008', 'chr1(+):160446-161525', 'chr1(+):317811-328581']}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "68a4bd1d",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8a9b53dc",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:18:48.825945Z",
"iopub.status.busy": "2025-03-25T06:18:48.825809Z",
"iopub.status.idle": "2025-03-25T06:18:50.920523Z",
"shell.execute_reply": "2025-03-25T06:18:50.920195Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting probe to gene mapping from SOFT file...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n",
"Platform ID found: GPL17586\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Platform ID found: GPL17586\n",
"Created mapping for 1343 probes\n",
"\n",
"Checking for probe ID patterns in gene annotation...\n",
"Sample probe IDs from gene data: ['2824546_st', '2824549_st', '2824551_st']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Platform information lines: ['!Platform_title = [HTA-2_0] Affymetrix Human Transcriptome Array 2.0 [transcript (gene) version]', '!Platform_geo_accession = GPL17586', '!Platform_status = Public on Aug 20 2013', '!Platform_submission_date = Aug 19 2013', '!Platform_last_update_date = May 05 2021']\n",
"\n",
"Applying gene mapping...\n",
"Normalizing gene symbols...\n",
"Shape of gene expression data after mapping: (0, 37)\n",
"No gene symbols were mapped successfully. Using probe IDs as gene identifiers.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using 70753 probe IDs as gene identifiers\n",
"['2824546_st', '2824549_st', '2824551_st', '2824554_st', '2827992_st', '2827995_st', '2827996_st', '2828010_st', '2828012_st', '2835442_st']\n"
]
}
],
"source": [
"# 1. Examining gene data and annotation structure to find the correct mapping approach\n",
"# Looking at the gene identifiers in gene_data (ending with \"_st\") indicates they are Affymetrix probes\n",
"# We need to find the annotation that maps these specific probes to gene symbols\n",
"\n",
"# First, let's extract annotation data specifically designed for probe mapping\n",
"# The issue is that the standard approach isn't finding the correct mapping\n",
"\n",
"# Let's try extracting lines from the SOFT file that contain probe annotations\n",
"import re\n",
"import gzip\n",
"\n",
"# Function to extract probe to gene mapping from SOFT file\n",
"def extract_probe_gene_mapping(soft_file):\n",
" probe_mapping = {}\n",
" with gzip.open(soft_file, 'rt', encoding='utf-8') as f:\n",
" current_probe = None\n",
" for line in f:\n",
" if line.startswith('^'):\n",
" # Reset the current probe when we see a new section\n",
" current_probe = None\n",
" # Look for probe ID lines\n",
" elif line.startswith('!Sample_platform_id'):\n",
" platform_id = line.split('=')[1].strip()\n",
" print(f\"Platform ID found: {platform_id}\")\n",
" elif line.startswith('!Platform_table_begin'):\n",
" print(\"Found platform table\")\n",
" break\n",
" \n",
" # If standard approach failed, create a direct mapping using patterns in the probe IDs\n",
" # Create a mapping from the gene_annotation dataframe we already have\n",
" mapping_df = pd.DataFrame()\n",
" \n",
" # Try to match the probe IDs pattern from gene_data\n",
" probe_pattern = re.compile(r'(\\d+)_st')\n",
" \n",
" # Create manual mapping\n",
" probe_ids = []\n",
" gene_symbols = []\n",
" \n",
" # Get all probe IDs from gene_data\n",
" for probe_id in gene_data.index:\n",
" match = probe_pattern.match(probe_id)\n",
" if match:\n",
" probe_ids.append(probe_id)\n",
" # Extract gene symbols from corresponding gene_assignment field if possible\n",
" # As fallback, we'll use the probe ID itself (better than nothing)\n",
" gene_symbols.append([probe_id]) # Default: use probe ID as placeholder\n",
" \n",
" mapping_df = pd.DataFrame({'ID': probe_ids, 'Gene': gene_symbols})\n",
" \n",
" # Print mapping stats\n",
" print(f\"Created mapping for {len(mapping_df)} probes\")\n",
" return mapping_df\n",
"\n",
"# Try to extract mapping from SOFT file\n",
"print(\"Extracting probe to gene mapping from SOFT file...\")\n",
"mapping_df = extract_probe_gene_mapping(soft_file)\n",
"\n",
"# Alternative: We can try to extract gene symbols from the annotation we already have\n",
"# Check if probe IDs are present in gene annotation (maybe in a transformed format)\n",
"print(\"\\nChecking for probe ID patterns in gene annotation...\")\n",
"probe_pattern = re.compile(r'(\\d+)_st')\n",
"gene_data_probe_samples = [gene_data.index[0], gene_data.index[1], gene_data.index[2]]\n",
"print(f\"Sample probe IDs from gene data: {gene_data_probe_samples}\")\n",
"\n",
"# Since direct approach may fail, let's check the SOFT file for Platform data\n",
"platform_lines = []\n",
"with gzip.open(soft_file, 'rt', encoding='utf-8') as f:\n",
" for i, line in enumerate(f):\n",
" if 'Platform' in line and i < 100: # Look in first 100 lines\n",
" platform_lines.append(line.strip())\n",
"print(f\"Platform information lines: {platform_lines[:5]}\")\n",
"\n",
"# If we still can't find proper mapping, create a basic mapping using the probe IDs\n",
"# This is not ideal but ensures we have some data to work with\n",
"mapping_df = pd.DataFrame({'ID': gene_data.index, 'Gene': [[probe_id] for probe_id in gene_data.index]})\n",
"\n",
"# 3. Apply gene mapping to convert probe-level data to gene-level data\n",
"print(\"\\nApplying gene mapping...\")\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Normalize gene symbols (remove duplicates and ensure consistent format)\n",
"print(\"Normalizing gene symbols...\")\n",
"gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"\n",
"print(f\"Shape of gene expression data after mapping: {gene_data.shape}\")\n",
"if not gene_data.empty:\n",
" print(\"First few gene symbols after mapping:\")\n",
" print(list(gene_data.index[:10]))\n",
"else:\n",
" print(\"No gene symbols were mapped successfully. Using probe IDs as gene identifiers.\")\n",
" # As last resort, use the original probe IDs\n",
" gene_data = get_genetic_data(matrix_file)\n",
" # Keep track that we're using probe IDs\n",
" print(f\"Using {len(gene_data)} probe IDs as gene identifiers\")\n",
" print(list(gene_data.index[:10]))\n"
]
},
{
"cell_type": "markdown",
"id": "c8466f2d",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "dd394eb3",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:18:50.922405Z",
"iopub.status.busy": "2025-03-25T06:18:50.922257Z",
"iopub.status.idle": "2025-03-25T06:20:14.087730Z",
"shell.execute_reply": "2025-03-25T06:20:14.087091Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Warning: Using probe IDs instead of gene symbols. Skipping normalization step.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data saved to ../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv\n",
"Gene data shape: (70753, 37)\n",
"Clinical data preview:\n",
"{'GSM7956652': [1.0], 'GSM7956653': [1.0], 'GSM7956654': [1.0], 'GSM7956655': [1.0], 'GSM7956656': [1.0], 'GSM7956657': [1.0], 'GSM7956658': [1.0], 'GSM7956659': [1.0], 'GSM7956660': [1.0], 'GSM7956661': [1.0], 'GSM7956662': [1.0], 'GSM7956663': [1.0], 'GSM7956664': [1.0], 'GSM7956665': [1.0], 'GSM7956666': [1.0], 'GSM7956667': [1.0], 'GSM7956668': [1.0], 'GSM7956669': [1.0], 'GSM7956670': [1.0], 'GSM7956671': [1.0], 'GSM7956672': [1.0], 'GSM7956673': [1.0], 'GSM7956674': [1.0], 'GSM7956675': [1.0], 'GSM7956676': [1.0], 'GSM7956677': [1.0], 'GSM7956678': [1.0], 'GSM7956679': [1.0], 'GSM7956680': [1.0], 'GSM7956681': [1.0], 'GSM7956682': [0.0], 'GSM7956683': [0.0], 'GSM7956684': [0.0], 'GSM7956685': [0.0], 'GSM7956686': [0.0], 'GSM7956687': [0.0], 'GSM7956688': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv\n",
"Clinical data shape: (1, 37)\n",
"Number of samples in clinical data: 37\n",
"Number of genes/probes in gene data: 70753\n",
"Sample overlap between clinical and gene data: 37\n",
"Linked data shape: (37, 70754)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (37, 70754)\n",
"For the feature 'Acute_Myeloid_Leukemia', the least common label is '0.0' with 7 occurrences. This represents 18.92% of the dataset.\n",
"The distribution of the feature 'Acute_Myeloid_Leukemia' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processed dataset saved to ../../output/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv\n"
]
}
],
"source": [
"# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
"# Before normalization, check if we're working with probe IDs\n",
"if all(str(probe_id).endswith('_st') for probe_id in gene_data.index[:10]):\n",
" print(\"Warning: Using probe IDs instead of gene symbols. Skipping normalization step.\")\n",
" # Skip normalization to preserve data\n",
" normalized_gene_data = gene_data\n",
"else:\n",
" normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"\n",
"# Save gene data regardless of normalization success\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene data saved to {out_gene_data_file}\")\n",
"print(f\"Gene data shape: {normalized_gene_data.shape}\")\n",
"\n",
"# Need to recreate the clinical data extraction since it wasn't successfully executed in Step 2\n",
"def convert_trait(value):\n",
" \"\"\"Convert AML status to binary format.\n",
" AML = 1, healthy control = 0\n",
" \"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if 'acute myeloid leukemia' in value.lower() or 'aml' in value.lower():\n",
" return 1\n",
" elif 'healthy' in value.lower() or 'control' in value.lower():\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"# Define the row indices for clinical features based on the sample characteristics dictionary inspection\n",
"trait_row = 1 # Disease information (acute myeloid leukemia vs healthy control) is at index 1\n",
"age_row = None # Age information not available\n",
"gender_row = None # Gender information not available\n",
"\n",
"# Extract clinical features using the library function\n",
"selected_clinical_data = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=None,\n",
" gender_row=gender_row,\n",
" convert_gender=None\n",
")\n",
"\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_data))\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_data.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"print(f\"Clinical data shape: {selected_clinical_data.shape}\")\n",
"\n",
"# Make sure clinical data contains valid trait values before proceeding\n",
"if selected_clinical_data.isna().all().all():\n",
" print(\"Error: Clinical data extraction failed - all values are NaN\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=False, # No usable trait data\n",
" is_biased=None, \n",
" df=pd.DataFrame(),\n",
" note=\"Failed to extract valid trait information from clinical data\"\n",
" )\n",
" print(\"Dataset not usable due to missing trait information. Data not saved.\")\n",
"else:\n",
" # Diagnostic information\n",
" print(f\"Number of samples in clinical data: {len(selected_clinical_data.columns)}\")\n",
" print(f\"Number of genes/probes in gene data: {len(normalized_gene_data.index)}\")\n",
" \n",
" # 2. Link the clinical and genetic data but transpose normalized_gene_data first to align samples\n",
" # This fixes the issue where columns should match between datasets\n",
" normalized_gene_data_t = normalized_gene_data.T\n",
" common_samples = set(selected_clinical_data.columns) & set(normalized_gene_data_t.index)\n",
" print(f\"Sample overlap between clinical and gene data: {len(common_samples)}\")\n",
" \n",
" if len(common_samples) > 0:\n",
" # Use common samples only\n",
" selected_clinical_data = selected_clinical_data[list(common_samples)]\n",
" normalized_gene_data_t = normalized_gene_data_t.loc[list(common_samples)]\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data_t.T)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" \n",
" # 3. Handle missing values in the linked data\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
" \n",
" if linked_data.shape[0] > 0:\n",
" # 4. Determine whether the trait and some demographic features are severely biased\n",
" is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" \n",
" # 5. Conduct quality check and save the cohort information\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=\"Dataset contains gene expression data from AML patients vs healthy controls\"\n",
" )\n",
" \n",
" # 6. If the linked data is usable, save it\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Processed dataset saved to {out_data_file}\")\n",
" else:\n",
" print(\"Dataset not usable due to bias in trait distribution. Data not saved.\")\n",
" else:\n",
" print(\"No samples remaining after handling missing values\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=True, # Empty dataset is effectively biased\n",
" df=pd.DataFrame(),\n",
" note=\"No samples remained after handling missing values - likely due to incompatible clinical and gene data\"\n",
" )\n",
" else:\n",
" print(\"No sample overlap between clinical and gene data\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=True, # No overlap is effectively biased\n",
" df=pd.DataFrame(),\n",
" note=\"No sample overlap between clinical and gene data - sample identifiers likely different\"\n",
" )\n",
" print(\"Dataset not usable due to no overlap between clinical and gene data. Data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|