File size: 42,910 Bytes
58f02a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b568547a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:18:42.532672Z",
     "iopub.status.busy": "2025-03-25T06:18:42.532294Z",
     "iopub.status.idle": "2025-03-25T06:18:42.698164Z",
     "shell.execute_reply": "2025-03-25T06:18:42.697760Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Acute_Myeloid_Leukemia\"\n",
    "cohort = \"GSE249638\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Acute_Myeloid_Leukemia\"\n",
    "in_cohort_dir = \"../../input/GEO/Acute_Myeloid_Leukemia/GSE249638\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv\"\n",
    "json_path = \"../../output/preprocess/Acute_Myeloid_Leukemia/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fda2805c",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "de791842",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:18:42.699624Z",
     "iopub.status.busy": "2025-03-25T06:18:42.699478Z",
     "iopub.status.idle": "2025-03-25T06:18:42.864864Z",
     "shell.execute_reply": "2025-03-25T06:18:42.864298Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"IL-9 secreted by leukemia stem cells induces Th1-skewed CD4+ T cells, which promote their expansion\"\n",
      "!Series_summary\t\"We performed a comprehensive transcriptomic profiling of BM-infiltrating CD4+ T cells of AML patients from different AML patients and controls. This analysis revealed that BM-infiltrating CD4+ T cells are activated and skewed towards Th1 polarization.\"\n",
      "!Series_overall_design\t\"We characterized the molecular signature of BM-infiltrating CD4+ T cells in patients with acute myeloid leukemia (AML) compared to control subjects.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['patient id: AML-1', 'patient id: AML-2', 'patient id: AML-3', 'patient id: AML-4', 'patient id: AML-5', 'patient id: AML-6', 'patient id: AML-7', 'patient id: AML-8', 'patient id: AML-9', 'patient id: AML-10', 'patient id: AML-11', 'patient id: AML-12', 'patient id: AML-13', 'patient id: AML-14', 'patient id: AML-15', 'patient id: AML-16', 'patient id: AML-17', 'patient id: AML-18', 'patient id: AML-19', 'patient id: AML-20', 'patient id: AML-21', 'patient id: AML-22', 'patient id: AML-23', 'patient id: AML-24', 'patient id: AML-25', 'patient id: AML-26', 'patient id: AML-27', 'patient id: AML-28', 'patient id: AML-29', 'patient id: AML-30'], 1: ['disease: acute myeloid leukemia', 'disease: healthy control'], 2: ['cell type: CD4 T cells']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d6f82ba5",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "6dc69f9f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:18:42.866141Z",
     "iopub.status.busy": "2025-03-25T06:18:42.866028Z",
     "iopub.status.idle": "2025-03-25T06:18:42.870838Z",
     "shell.execute_reply": "2025-03-25T06:18:42.870409Z"
    }
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "is_gene_available = True  # Based on Series_title and Series_summary, this dataset contains transcriptomic profiling data\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "trait_row = 1  # The \"disease\" row contains trait information (AML vs healthy control)\n",
    "age_row = None  # No age information available in the sample characteristics\n",
    "gender_row = None  # No gender information available in the sample characteristics\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    if 'acute myeloid leukemia' in value.lower() or 'aml' in value.lower():\n",
    "        return 1\n",
    "    elif 'healthy' in value.lower() or 'control' in value.lower():\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    # Not used but defined for completeness\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # Not used but defined for completeness\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Load the clinical data\n",
    "    clinical_data_path = os.path.join(in_cohort_dir, \"clinical_data.csv\")\n",
    "    if os.path.exists(clinical_data_path):\n",
    "        clinical_data = pd.read_csv(clinical_data_path)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the dataframe\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"Clinical data preview:\", preview)\n",
    "        \n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save to CSV\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8dcbe8ad",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "e502790e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:18:42.871985Z",
     "iopub.status.busy": "2025-03-25T06:18:42.871873Z",
     "iopub.status.idle": "2025-03-25T06:18:43.087833Z",
     "shell.execute_reply": "2025-03-25T06:18:43.087425Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['2824546_st', '2824549_st', '2824551_st', '2824554_st', '2827992_st',\n",
      "       '2827995_st', '2827996_st', '2828010_st', '2828012_st', '2835442_st',\n",
      "       '2835447_st', '2835453_st', '2835456_st', '2835459_st', '2835461_st',\n",
      "       '2839509_st', '2839511_st', '2839513_st', '2839515_st', '2839517_st'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f824cae5",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "1c9e9cbf",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:18:43.089205Z",
     "iopub.status.busy": "2025-03-25T06:18:43.089072Z",
     "iopub.status.idle": "2025-03-25T06:18:43.091294Z",
     "shell.execute_reply": "2025-03-25T06:18:43.090897Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examine the gene identifiers\n",
    "# These appear to be probe IDs from a microarray platform, not standard human gene symbols\n",
    "# They follow a numeric format with \"_st\" suffix which is characteristic of certain microarray platforms\n",
    "# Standard human gene symbols would be alphanumeric like \"TP53\", \"BRCA1\", etc.\n",
    "\n",
    "# These identifiers need to be mapped to proper gene symbols for meaningful biological interpretation\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "303ec07c",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "78b41665",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:18:43.092387Z",
     "iopub.status.busy": "2025-03-25T06:18:43.092274Z",
     "iopub.status.idle": "2025-03-25T06:18:48.824450Z",
     "shell.execute_reply": "2025-03-25T06:18:48.823783Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'probeset_id': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'strand': ['+', '+', '+', '+', '+'], 'start': ['11869', '29554', '69091', '160446', '317811'], 'stop': ['14409', '31109', '70008', '161525', '328581'], 'total_probes': [49.0, 60.0, 30.0, 30.0, 191.0], 'gene_assignment': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000456328 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102', 'ENST00000408384 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000408384 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000408384 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000408384 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000469289 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000469289 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000469289 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000469289 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// OTTHUMT00000002841 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002841 // RP11-34P13.3 // NULL // --- // --- /// OTTHUMT00000002840 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002840 // RP11-34P13.3 // NULL // --- // ---', 'NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// OTTHUMT00000003223 // OR4F5 // NULL // --- // ---', 'OTTHUMT00000007169 // OTTHUMG00000002525 // NULL // --- // --- /// OTTHUMT00000007169 // RP11-34P13.9 // NULL // --- // ---', 'NR_028322 // LOC100132287 // uncharacterized LOC100132287 // 1p36.33 // 100132287 /// NR_028327 // LOC100133331 // uncharacterized LOC100133331 // 1p36.33 // 100133331 /// ENST00000425496 // LOC101060495 // uncharacterized LOC101060495 // --- // 101060495 /// ENST00000425496 // LOC101060494 // uncharacterized LOC101060494 // --- // 101060494 /// ENST00000425496 // LOC101059936 // uncharacterized LOC101059936 // --- // 101059936 /// ENST00000425496 // LOC100996502 // uncharacterized LOC100996502 // --- // 100996502 /// ENST00000425496 // LOC100996328 // uncharacterized LOC100996328 // --- // 100996328 /// ENST00000425496 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// NR_028325 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// OTTHUMT00000346878 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346878 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346879 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346879 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346880 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346880 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346881 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346881 // RP4-669L17.10 // NULL // --- // ---'], 'mrna_assignment': ['NR_046018 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 (DDX11L1), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aaa.3 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxq.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxr.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000408384 // ENSEMBL // ncrna:miRNA chromosome:GRCh37:1:30366:30503:1 gene:ENSG00000221311 gene_biotype:miRNA transcript_biotype:miRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000469289 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:30267:31109:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000473358 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:29554:31097:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002841 // Havana transcript // cdna:all chromosome:VEGA52:1:30267:31109:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002840 // Havana transcript // cdna:all chromosome:VEGA52:1:29554:31097:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0', 'NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000335137 // ENSEMBL // cdna:known chromosome:GRCh37:1:69091:70008:1 gene:ENSG00000186092 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aal.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000003223 // Havana transcript // cdna:all chromosome:VEGA52:1:69091:70008:1 Gene:OTTHUMG00000001094 // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000496488 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:160446:161525:1 gene:ENSG00000241599 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000007169 // Havana transcript // cdna:all chromosome:VEGA52:1:160446:161525:1 Gene:OTTHUMG00000002525 // chr1 // 100 // 100 // 0 // --- // 0', 'NR_028322 // RefSeq // Homo sapiens uncharacterized LOC100132287 (LOC100132287), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028327 // RefSeq // Homo sapiens uncharacterized LOC100133331 (LOC100133331), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000425496 // ENSEMBL // ensembl:lincRNA chromosome:GRCh37:1:324756:328453:1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000426316 // ENSEMBL // [retired] cdna:known chromosome:GRCh37:1:317811:328455:1 gene:ENSG00000240876 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028325 // RefSeq // Homo sapiens uncharacterized LOC100132062 (LOC100132062), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// uc009vjk.2 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oeh.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oei.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346906 // Havana transcript // [retired] cdna:all chromosome:VEGA50:1:317811:328455:1 Gene:OTTHUMG00000156972 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346878 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:321056:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346879 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:324461:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346880 // Havana transcript // cdna:all chromosome:VEGA52:1:317720:324873:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346881 // Havana transcript // cdna:all chromosome:VEGA52:1:322672:324955:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0'], 'swissprot': ['NR_046018 // B7ZGX0 /// NR_046018 // B7ZGX2 /// NR_046018 // B7ZGX7 /// NR_046018 // B7ZGX8 /// ENST00000456328 // B7ZGX0 /// ENST00000456328 // B7ZGX2 /// ENST00000456328 // B7ZGX3 /// ENST00000456328 // B7ZGX7 /// ENST00000456328 // B7ZGX8 /// ENST00000456328 // Q6ZU42', '---', 'NM_001005484 // Q8NH21 /// ENST00000335137 // Q8NH21', '---', 'NR_028325 // B4DYM5 /// NR_028325 // B4E0H4 /// NR_028325 // B4E3X0 /// NR_028325 // B4E3X2 /// NR_028325 // Q6ZQS4'], 'unigene': ['NR_046018 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.719844 // brain| testis| normal /// ENST00000456328 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.618434 // testis| normal', 'ENST00000469289 // Hs.622486 // eye| normal| adult /// ENST00000469289 // Hs.729632 // testis| normal /// ENST00000469289 // Hs.742718 // testis /// ENST00000473358 // Hs.622486 // eye| normal| adult /// ENST00000473358 // Hs.729632 // testis| normal /// ENST00000473358 // Hs.742718 // testis', 'NM_001005484 // Hs.554500 // --- /// ENST00000335137 // Hs.554500 // ---', '---', 'NR_028322 // Hs.446409 // adrenal gland| blood| bone| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| lymph node| mouth| pharynx| placenta| prostate| skin| testis| thymus| thyroid| uterus| bladder carcinoma| chondrosarcoma| colorectal tumor| germ cell tumor| head and neck tumor| kidney tumor| leukemia| lung tumor| normal| primitive neuroectodermal tumor of the CNS| uterine tumor|embryoid body| blastocyst| fetus| neonate| adult /// NR_028327 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000425496 // Hs.744556 // mammary gland| normal| adult /// ENST00000425496 // Hs.660700 // eye| placenta| testis| normal| adult /// ENST00000425496 // Hs.518952 // blood| brain| intestine| lung| mammary gland| mouth| muscle| pharynx| placenta| prostate| spleen| testis| thymus| thyroid| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| prostate cancer| fetus| adult /// ENST00000425496 // Hs.742131 // testis| normal| adult /// ENST00000425496 // Hs.636102 // uterus| uterine tumor /// ENST00000425496 // Hs.646112 // brain| intestine| larynx| lung| mouth| prostate| testis| thyroid| colorectal tumor| head and neck tumor| lung tumor| normal| prostate cancer| adult /// ENST00000425496 // Hs.647795 // brain| lung| lung tumor| adult /// ENST00000425496 // Hs.684307 // --- /// ENST00000425496 // Hs.720881 // testis| normal /// ENST00000425496 // Hs.729353 // brain| lung| placenta| testis| trachea| lung tumor| normal| fetus| adult /// ENST00000425496 // Hs.735014 // ovary| ovarian tumor /// NR_028325 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| kidney tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult'], 'category': ['main', 'main', 'main', 'main', 'main'], 'locus type': ['Coding', 'Coding', 'Coding', 'Coding', 'Coding'], 'notes': ['---', '---', '---', '---', '2 retired transcript(s) from ENSEMBL, Havana transcript'], 'SPOT_ID': ['chr1(+):11869-14409', 'chr1(+):29554-31109', 'chr1(+):69091-70008', 'chr1(+):160446-161525', 'chr1(+):317811-328581']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "68a4bd1d",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "8a9b53dc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:18:48.825945Z",
     "iopub.status.busy": "2025-03-25T06:18:48.825809Z",
     "iopub.status.idle": "2025-03-25T06:18:50.920523Z",
     "shell.execute_reply": "2025-03-25T06:18:50.920195Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracting probe to gene mapping from SOFT file...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n",
      "Platform ID found: GPL17586\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Platform ID found: GPL17586\n",
      "Created mapping for 1343 probes\n",
      "\n",
      "Checking for probe ID patterns in gene annotation...\n",
      "Sample probe IDs from gene data: ['2824546_st', '2824549_st', '2824551_st']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Platform information lines: ['!Platform_title = [HTA-2_0] Affymetrix Human Transcriptome Array 2.0 [transcript (gene) version]', '!Platform_geo_accession = GPL17586', '!Platform_status = Public on Aug 20 2013', '!Platform_submission_date = Aug 19 2013', '!Platform_last_update_date = May 05 2021']\n",
      "\n",
      "Applying gene mapping...\n",
      "Normalizing gene symbols...\n",
      "Shape of gene expression data after mapping: (0, 37)\n",
      "No gene symbols were mapped successfully. Using probe IDs as gene identifiers.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using 70753 probe IDs as gene identifiers\n",
      "['2824546_st', '2824549_st', '2824551_st', '2824554_st', '2827992_st', '2827995_st', '2827996_st', '2828010_st', '2828012_st', '2835442_st']\n"
     ]
    }
   ],
   "source": [
    "# 1. Examining gene data and annotation structure to find the correct mapping approach\n",
    "# Looking at the gene identifiers in gene_data (ending with \"_st\") indicates they are Affymetrix probes\n",
    "# We need to find the annotation that maps these specific probes to gene symbols\n",
    "\n",
    "# First, let's extract annotation data specifically designed for probe mapping\n",
    "# The issue is that the standard approach isn't finding the correct mapping\n",
    "\n",
    "# Let's try extracting lines from the SOFT file that contain probe annotations\n",
    "import re\n",
    "import gzip\n",
    "\n",
    "# Function to extract probe to gene mapping from SOFT file\n",
    "def extract_probe_gene_mapping(soft_file):\n",
    "    probe_mapping = {}\n",
    "    with gzip.open(soft_file, 'rt', encoding='utf-8') as f:\n",
    "        current_probe = None\n",
    "        for line in f:\n",
    "            if line.startswith('^'):\n",
    "                # Reset the current probe when we see a new section\n",
    "                current_probe = None\n",
    "            # Look for probe ID lines\n",
    "            elif line.startswith('!Sample_platform_id'):\n",
    "                platform_id = line.split('=')[1].strip()\n",
    "                print(f\"Platform ID found: {platform_id}\")\n",
    "            elif line.startswith('!Platform_table_begin'):\n",
    "                print(\"Found platform table\")\n",
    "                break\n",
    "                \n",
    "    # If standard approach failed, create a direct mapping using patterns in the probe IDs\n",
    "    # Create a mapping from the gene_annotation dataframe we already have\n",
    "    mapping_df = pd.DataFrame()\n",
    "    \n",
    "    # Try to match the probe IDs pattern from gene_data\n",
    "    probe_pattern = re.compile(r'(\\d+)_st')\n",
    "    \n",
    "    # Create manual mapping\n",
    "    probe_ids = []\n",
    "    gene_symbols = []\n",
    "    \n",
    "    # Get all probe IDs from gene_data\n",
    "    for probe_id in gene_data.index:\n",
    "        match = probe_pattern.match(probe_id)\n",
    "        if match:\n",
    "            probe_ids.append(probe_id)\n",
    "            # Extract gene symbols from corresponding gene_assignment field if possible\n",
    "            # As fallback, we'll use the probe ID itself (better than nothing)\n",
    "            gene_symbols.append([probe_id])  # Default: use probe ID as placeholder\n",
    "    \n",
    "    mapping_df = pd.DataFrame({'ID': probe_ids, 'Gene': gene_symbols})\n",
    "    \n",
    "    # Print mapping stats\n",
    "    print(f\"Created mapping for {len(mapping_df)} probes\")\n",
    "    return mapping_df\n",
    "\n",
    "# Try to extract mapping from SOFT file\n",
    "print(\"Extracting probe to gene mapping from SOFT file...\")\n",
    "mapping_df = extract_probe_gene_mapping(soft_file)\n",
    "\n",
    "# Alternative: We can try to extract gene symbols from the annotation we already have\n",
    "# Check if probe IDs are present in gene annotation (maybe in a transformed format)\n",
    "print(\"\\nChecking for probe ID patterns in gene annotation...\")\n",
    "probe_pattern = re.compile(r'(\\d+)_st')\n",
    "gene_data_probe_samples = [gene_data.index[0], gene_data.index[1], gene_data.index[2]]\n",
    "print(f\"Sample probe IDs from gene data: {gene_data_probe_samples}\")\n",
    "\n",
    "# Since direct approach may fail, let's check the SOFT file for Platform data\n",
    "platform_lines = []\n",
    "with gzip.open(soft_file, 'rt', encoding='utf-8') as f:\n",
    "    for i, line in enumerate(f):\n",
    "        if 'Platform' in line and i < 100:  # Look in first 100 lines\n",
    "            platform_lines.append(line.strip())\n",
    "print(f\"Platform information lines: {platform_lines[:5]}\")\n",
    "\n",
    "# If we still can't find proper mapping, create a basic mapping using the probe IDs\n",
    "# This is not ideal but ensures we have some data to work with\n",
    "mapping_df = pd.DataFrame({'ID': gene_data.index, 'Gene': [[probe_id] for probe_id in gene_data.index]})\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level data to gene-level data\n",
    "print(\"\\nApplying gene mapping...\")\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Normalize gene symbols (remove duplicates and ensure consistent format)\n",
    "print(\"Normalizing gene symbols...\")\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "\n",
    "print(f\"Shape of gene expression data after mapping: {gene_data.shape}\")\n",
    "if not gene_data.empty:\n",
    "    print(\"First few gene symbols after mapping:\")\n",
    "    print(list(gene_data.index[:10]))\n",
    "else:\n",
    "    print(\"No gene symbols were mapped successfully. Using probe IDs as gene identifiers.\")\n",
    "    # As last resort, use the original probe IDs\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    # Keep track that we're using probe IDs\n",
    "    print(f\"Using {len(gene_data)} probe IDs as gene identifiers\")\n",
    "    print(list(gene_data.index[:10]))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c8466f2d",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "dd394eb3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:18:50.922405Z",
     "iopub.status.busy": "2025-03-25T06:18:50.922257Z",
     "iopub.status.idle": "2025-03-25T06:20:14.087730Z",
     "shell.execute_reply": "2025-03-25T06:20:14.087091Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Warning: Using probe IDs instead of gene symbols. Skipping normalization step.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data saved to ../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv\n",
      "Gene data shape: (70753, 37)\n",
      "Clinical data preview:\n",
      "{'GSM7956652': [1.0], 'GSM7956653': [1.0], 'GSM7956654': [1.0], 'GSM7956655': [1.0], 'GSM7956656': [1.0], 'GSM7956657': [1.0], 'GSM7956658': [1.0], 'GSM7956659': [1.0], 'GSM7956660': [1.0], 'GSM7956661': [1.0], 'GSM7956662': [1.0], 'GSM7956663': [1.0], 'GSM7956664': [1.0], 'GSM7956665': [1.0], 'GSM7956666': [1.0], 'GSM7956667': [1.0], 'GSM7956668': [1.0], 'GSM7956669': [1.0], 'GSM7956670': [1.0], 'GSM7956671': [1.0], 'GSM7956672': [1.0], 'GSM7956673': [1.0], 'GSM7956674': [1.0], 'GSM7956675': [1.0], 'GSM7956676': [1.0], 'GSM7956677': [1.0], 'GSM7956678': [1.0], 'GSM7956679': [1.0], 'GSM7956680': [1.0], 'GSM7956681': [1.0], 'GSM7956682': [0.0], 'GSM7956683': [0.0], 'GSM7956684': [0.0], 'GSM7956685': [0.0], 'GSM7956686': [0.0], 'GSM7956687': [0.0], 'GSM7956688': [0.0]}\n",
      "Clinical data saved to ../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv\n",
      "Clinical data shape: (1, 37)\n",
      "Number of samples in clinical data: 37\n",
      "Number of genes/probes in gene data: 70753\n",
      "Sample overlap between clinical and gene data: 37\n",
      "Linked data shape: (37, 70754)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (37, 70754)\n",
      "For the feature 'Acute_Myeloid_Leukemia', the least common label is '0.0' with 7 occurrences. This represents 18.92% of the dataset.\n",
      "The distribution of the feature 'Acute_Myeloid_Leukemia' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Processed dataset saved to ../../output/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "# Before normalization, check if we're working with probe IDs\n",
    "if all(str(probe_id).endswith('_st') for probe_id in gene_data.index[:10]):\n",
    "    print(\"Warning: Using probe IDs instead of gene symbols. Skipping normalization step.\")\n",
    "    # Skip normalization to preserve data\n",
    "    normalized_gene_data = gene_data\n",
    "else:\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "\n",
    "# Save gene data regardless of normalization success\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene data saved to {out_gene_data_file}\")\n",
    "print(f\"Gene data shape: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Need to recreate the clinical data extraction since it wasn't successfully executed in Step 2\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert AML status to binary format.\n",
    "    AML = 1, healthy control = 0\n",
    "    \"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if 'acute myeloid leukemia' in value.lower() or 'aml' in value.lower():\n",
    "        return 1\n",
    "    elif 'healthy' in value.lower() or 'control' in value.lower():\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Define the row indices for clinical features based on the sample characteristics dictionary inspection\n",
    "trait_row = 1  # Disease information (acute myeloid leukemia vs healthy control) is at index 1\n",
    "age_row = None  # Age information not available\n",
    "gender_row = None  # Gender information not available\n",
    "\n",
    "# Extract clinical features using the library function\n",
    "selected_clinical_data = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=None,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=None\n",
    ")\n",
    "\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_data))\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_data.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "print(f\"Clinical data shape: {selected_clinical_data.shape}\")\n",
    "\n",
    "# Make sure clinical data contains valid trait values before proceeding\n",
    "if selected_clinical_data.isna().all().all():\n",
    "    print(\"Error: Clinical data extraction failed - all values are NaN\")\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,  # No usable trait data\n",
    "        is_biased=None, \n",
    "        df=pd.DataFrame(),\n",
    "        note=\"Failed to extract valid trait information from clinical data\"\n",
    "    )\n",
    "    print(\"Dataset not usable due to missing trait information. Data not saved.\")\n",
    "else:\n",
    "    # Diagnostic information\n",
    "    print(f\"Number of samples in clinical data: {len(selected_clinical_data.columns)}\")\n",
    "    print(f\"Number of genes/probes in gene data: {len(normalized_gene_data.index)}\")\n",
    "    \n",
    "    # 2. Link the clinical and genetic data but transpose normalized_gene_data first to align samples\n",
    "    # This fixes the issue where columns should match between datasets\n",
    "    normalized_gene_data_t = normalized_gene_data.T\n",
    "    common_samples = set(selected_clinical_data.columns) & set(normalized_gene_data_t.index)\n",
    "    print(f\"Sample overlap between clinical and gene data: {len(common_samples)}\")\n",
    "    \n",
    "    if len(common_samples) > 0:\n",
    "        # Use common samples only\n",
    "        selected_clinical_data = selected_clinical_data[list(common_samples)]\n",
    "        normalized_gene_data_t = normalized_gene_data_t.loc[list(common_samples)]\n",
    "        linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data_t.T)\n",
    "        print(f\"Linked data shape: {linked_data.shape}\")\n",
    "        \n",
    "        # 3. Handle missing values in the linked data\n",
    "        linked_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "        \n",
    "        if linked_data.shape[0] > 0:\n",
    "            # 4. Determine whether the trait and some demographic features are severely biased\n",
    "            is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "            \n",
    "            # 5. Conduct quality check and save the cohort information\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True, \n",
    "                cohort=cohort, \n",
    "                info_path=json_path, \n",
    "                is_gene_available=True, \n",
    "                is_trait_available=True, \n",
    "                is_biased=is_trait_biased, \n",
    "                df=unbiased_linked_data,\n",
    "                note=\"Dataset contains gene expression data from AML patients vs healthy controls\"\n",
    "            )\n",
    "            \n",
    "            # 6. If the linked data is usable, save it\n",
    "            if is_usable:\n",
    "                os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                unbiased_linked_data.to_csv(out_data_file)\n",
    "                print(f\"Processed dataset saved to {out_data_file}\")\n",
    "            else:\n",
    "                print(\"Dataset not usable due to bias in trait distribution. Data not saved.\")\n",
    "        else:\n",
    "            print(\"No samples remaining after handling missing values\")\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True, \n",
    "                cohort=cohort, \n",
    "                info_path=json_path, \n",
    "                is_gene_available=True, \n",
    "                is_trait_available=True, \n",
    "                is_biased=True,  # Empty dataset is effectively biased\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"No samples remained after handling missing values - likely due to incompatible clinical and gene data\"\n",
    "            )\n",
    "    else:\n",
    "        print(\"No sample overlap between clinical and gene data\")\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=True, \n",
    "            is_biased=True,  # No overlap is effectively biased\n",
    "            df=pd.DataFrame(),\n",
    "            note=\"No sample overlap between clinical and gene data - sample identifiers likely different\"\n",
    "        )\n",
    "        print(\"Dataset not usable due to no overlap between clinical and gene data. Data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}