File size: 21,157 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "633b6e24",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:27:58.220636Z",
     "iopub.status.busy": "2025-03-25T06:27:58.220266Z",
     "iopub.status.idle": "2025-03-25T06:27:58.390637Z",
     "shell.execute_reply": "2025-03-25T06:27:58.390299Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Amyotrophic_Lateral_Sclerosis\"\n",
    "cohort = \"GSE212134\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Amyotrophic_Lateral_Sclerosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Amyotrophic_Lateral_Sclerosis/GSE212134\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/GSE212134.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212134.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE212134.csv\"\n",
    "json_path = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a75b92b5",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "a0b60a19",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:27:58.392097Z",
     "iopub.status.busy": "2025-03-25T06:27:58.391943Z",
     "iopub.status.idle": "2025-03-25T06:27:58.467075Z",
     "shell.execute_reply": "2025-03-25T06:27:58.466722Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Establishing mRNA and microRNA interactions driving disease heterogeneity in Amyotrophic lateral sclerosis\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Refer to individual Series\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['gender: Female', 'gender: Male']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5d73a6dd",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "51fbb8de",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:27:58.468351Z",
     "iopub.status.busy": "2025-03-25T06:27:58.468240Z",
     "iopub.status.idle": "2025-03-25T06:27:58.485912Z",
     "shell.execute_reply": "2025-03-25T06:27:58.485624Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the series title, it mentions \"mRNA and microRNA interactions\", \n",
    "# indicating gene expression data is likely available.\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# There's no explicit disease/trait status in the characteristics dictionary\n",
    "# The dataset is about ALS, but we don't see any classification of subjects\n",
    "trait_row = None\n",
    "\n",
    "# Age data is not present in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# Gender is available at index 0\n",
    "gender_row = 0\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "# Since trait data is not available, we define a placeholder function\n",
    "def convert_trait(value):\n",
    "    return None\n",
    "\n",
    "# Age conversion function (though not used in this case)\n",
    "def convert_age(value):\n",
    "    return None\n",
    "\n",
    "# Gender conversion function\n",
    "def convert_gender(value):\n",
    "    if not value or \":\" not in value:\n",
    "        return None\n",
    "    \n",
    "    gender = value.split(\":\", 1)[1].strip().lower()\n",
    "    \n",
    "    if \"female\" in gender:\n",
    "        return 0\n",
    "    elif \"male\" in gender:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save the cohort information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Skip the clinical feature extraction since trait_row is None (is_trait_available is False)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3cf502f9",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "faccb4aa",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:27:58.487072Z",
     "iopub.status.busy": "2025-03-25T06:27:58.486960Z",
     "iopub.status.idle": "2025-03-25T06:27:58.575148Z",
     "shell.execute_reply": "2025-03-25T06:27:58.574745Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['2315554', '2315633', '2315674', '2315739', '2315894', '2315918',\n",
      "       '2315951', '2316218', '2316245', '2316379', '2316558', '2316605',\n",
      "       '2316746', '2316905', '2316953', '2317246', '2317317', '2317434',\n",
      "       '2317472', '2317512'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene data dimensions: 22011 genes × 42 samples\n"
     ]
    }
   ],
   "source": [
    "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract the gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "print(\"\\nFirst 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# 4. Print the dimensions of the gene expression data\n",
    "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8166fc2f",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "620b5fe3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:27:58.576608Z",
     "iopub.status.busy": "2025-03-25T06:27:58.576456Z",
     "iopub.status.idle": "2025-03-25T06:27:58.578424Z",
     "shell.execute_reply": "2025-03-25T06:27:58.578125Z"
    }
   },
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers, these appear to be numeric probe IDs from a microarray platform\n",
    "# rather than standard human gene symbols (which would typically be alphanumeric like APOE, TP53, etc.)\n",
    "# These numeric IDs (like '2315554') need to be mapped to official gene symbols for biological interpretation.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6f2d9ec7",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "6c2d1a09",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:27:58.579662Z",
     "iopub.status.busy": "2025-03-25T06:27:58.579557Z",
     "iopub.status.idle": "2025-03-25T06:28:01.171779Z",
     "shell.execute_reply": "2025-03-25T06:28:01.171433Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'GB_LIST': ['NR_024005,NR_034090,NR_024004,AK093685', 'DQ786314', nan, nan, 'DQ786265'], 'SPOT_ID': ['chr1:11884-14409', 'chr1:14760-15198', 'chr1:19408-19712', 'chr1:25142-25532', 'chr1:27563-27813'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': ['11884', '14760', '19408', '25142', '27563'], 'RANGE_STOP': ['14409', '15198', '19712', '25532', '27813'], 'total_probes': ['20', '8', '4', '4', '4'], 'gene_assignment': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---'], 'mrna_assignment': ['NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 (DDX11L9), non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 100 // 75 // 15 // 15 // 0 /// AK093685 // GenBank // Homo sapiens cDNA FLJ36366 fis, clone THYMU2007824. // chr1 // 94 // 80 // 15 // 16 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000518655 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000253101 // chr1 // 100 // 80 // 16 // 16 // 0', 'DQ786314 // GenBank // Homo sapiens clone HLS_IMAGE_811138 mRNA sequence. // chr1 // 100 // 38 // 3 // 3 // 0', '---', '---', 'DQ786265 // GenBank // Homo sapiens clone HLS_IMAGE_298685 mRNA sequence. // chr1 // 100 // 100 // 4 // 4 // 0'], 'category': ['main', 'main', '---', '---', 'main']}\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ee683997",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "d5ea13bd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:28:01.173223Z",
     "iopub.status.busy": "2025-03-25T06:28:01.173099Z",
     "iopub.status.idle": "2025-03-25T06:28:01.606571Z",
     "shell.execute_reply": "2025-03-25T06:28:01.606170Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "After mapping: 48895 genes × 42 samples\n",
      "\n",
      "First 10 gene symbols after mapping:\n",
      "Index(['A-', 'A-2', 'A-52', 'A-E', 'A-I', 'A-II', 'A-IV', 'A-V', 'A0', 'A1'], dtype='object', name='Gene')\n"
     ]
    }
   ],
   "source": [
    "# Identify the column containing gene/probe IDs and gene symbols\n",
    "# From the gene_annotation preview, we can see:\n",
    "# - 'ID' column contains the same numeric identifiers as in the gene expression data\n",
    "# - 'gene_assignment' column contains gene information with gene symbols\n",
    "\n",
    "# 1. Identify mapping columns and create the mapping dataframe\n",
    "id_col = 'ID'  # Column containing probe IDs\n",
    "gene_col = 'gene_assignment'  # Column containing gene symbols\n",
    "\n",
    "# 2. Create a mapping dataframe from gene annotation\n",
    "gene_mapping = get_gene_mapping(gene_annotation, id_col, gene_col)\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "# The 'apply_gene_mapping' function handles splitting values among multiple genes\n",
    "# and summing contributions for each gene\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Check the result - print dimensions and preview some gene symbols\n",
    "print(f\"\\nAfter mapping: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "print(\"\\nFirst 10 gene symbols after mapping:\")\n",
    "print(gene_data.index[:10])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e2b068a5",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "5b52469b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:28:01.608047Z",
     "iopub.status.busy": "2025-03-25T06:28:01.607914Z",
     "iopub.status.idle": "2025-03-25T06:28:02.219349Z",
     "shell.execute_reply": "2025-03-25T06:28:02.218945Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape after normalization: (18418, 42)\n",
      "First 5 gene symbols after normalization: Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1'], dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212134.csv\n",
      "Sample IDs in clinical data:\n",
      "Index(['!Sample_geo_accession', 'GSM6509811', 'GSM6509812', 'GSM6509813',\n",
      "       'GSM6509814'],\n",
      "      dtype='object') ...\n",
      "Sample IDs in gene expression data:\n",
      "Index(['GSM6509811', 'GSM6509812', 'GSM6509813', 'GSM6509814', 'GSM6509815'], dtype='object') ...\n",
      "Trait data was determined to be unavailable in previous steps.\n",
      "Abnormality detected in the cohort: GSE212134. Preprocessing failed.\n",
      "Dataset deemed not usable for associational studies.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the index of gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "print(f\"First 5 gene symbols after normalization: {normalized_gene_data.index[:5]}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Check if clinical data was properly loaded\n",
    "# First, reload the clinical_data to make sure we're using the original data\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Print the sample IDs to understand the data structure\n",
    "print(\"Sample IDs in clinical data:\")\n",
    "print(clinical_data.columns[:5], \"...\")  # Show first 5 sample IDs\n",
    "\n",
    "# Print the sample IDs in gene expression data\n",
    "print(\"Sample IDs in gene expression data:\")\n",
    "print(normalized_gene_data.columns[:5], \"...\")  # Show first 5 sample IDs\n",
    "\n",
    "# Check trait availability from previous steps\n",
    "is_trait_available = trait_row is not None\n",
    "linked_data = None\n",
    "\n",
    "if is_trait_available:\n",
    "    # Extract clinical features with proper sample IDs\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age if age_row is not None else None,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender if gender_row is not None else None\n",
    "    )\n",
    "    \n",
    "    print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
    "    print(f\"Clinical data preview: {preview_df(selected_clinical_df, n=3)}\")\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # Link clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "    print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
    "    \n",
    "    # 3. Handle missing values\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "    \n",
    "    # 4. Determine if trait and demographic features are biased\n",
    "    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "    print(f\"Data shape after removing biased features: {linked_data.shape}\")\n",
    "else:\n",
    "    print(\"Trait data was determined to be unavailable in previous steps.\")\n",
    "    is_biased = True  # Dataset can't be used without trait data\n",
    "    linked_data = pd.DataFrame()  # Empty DataFrame instead of artificial data\n",
    "\n",
    "# 5. Validate and save cohort info\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data if not linked_data.empty else pd.DataFrame(index=normalized_gene_data.columns),\n",
    "    note=\"Dataset contains gene expression data from ALS patients, but lacks trait information (disease status) required for associational studies.\"\n",
    ")\n",
    "\n",
    "# 6. Save linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset deemed not usable for associational studies.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}