File size: 37,954 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "8094614c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:00.675227Z",
     "iopub.status.busy": "2025-03-25T06:45:00.675047Z",
     "iopub.status.idle": "2025-03-25T06:45:00.842571Z",
     "shell.execute_reply": "2025-03-25T06:45:00.842110Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Atherosclerosis\"\n",
    "cohort = \"GSE154851\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Atherosclerosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Atherosclerosis/GSE154851\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Atherosclerosis/GSE154851.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Atherosclerosis/gene_data/GSE154851.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Atherosclerosis/clinical_data/GSE154851.csv\"\n",
    "json_path = \"../../output/preprocess/Atherosclerosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6ea0f3c1",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "79c266d3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:00.843907Z",
     "iopub.status.busy": "2025-03-25T06:45:00.843757Z",
     "iopub.status.idle": "2025-03-25T06:45:01.080760Z",
     "shell.execute_reply": "2025-03-25T06:45:01.080249Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Investigation Of Genes Associated With Atherosclerosis In Patients With Systemic Lupus Erythematosus\"\n",
      "!Series_summary\t\"Systemic lupus erythematosus (SLE) is a chronic, autoimmune disease affecting multiple heterogeneous organs and systems. SLE is associated with increased risk of atherosclerosis and increased cardiovascular complications. In this study, we specifically aimed to identify patients with SLE who are genetically at risk for developing atherosclerosis. Sureprint G3 Human Gene Expression 8x60K Microarray kit (Agilent technologies, Santa Clara, CA, USA) was used in our study. Genes showing differences in expression between the groups were identified by using GeneSpring GX 10.0 program. A total of 155 genes showing expression level difference were detected between SLE patients and healthy controls. In molecular network analysis.\"\n",
      "!Series_overall_design\t\"38 patients with systemic lupus erythematosus (36 females, 2 males) and 32 healthy controls (32 females) were included in the study. Sureprint G3 Human Gene Expression 8x60K Microarray kit (Agilent technologies, Santa Clara, CA, USA) was used in our study.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: whole blood'], 1: ['gender: female', 'gender: male'], 2: ['age: 18y', 'age: 37y', 'age: 59y', 'age: 36y', 'age: 56y', 'age: 22y', 'age: 53y', 'age: 41y', 'age: 33y', 'age: 52y', 'age: 42y', 'age: 28y', 'age: 45y', 'age: 25y', 'age: 34y', 'age: 40y', 'age: 44y', 'age: 39y', 'age: 51y', 'age: 21y', 'age: 23y', 'age: 32y', 'age: 71y', 'age: 26y', 'age: 31y', 'age: 24y', 'age: 30y', 'age: 47y', 'age: 35y', 'age: 19y']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2a9fbd18",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "ef4dbf87",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:01.082450Z",
     "iopub.status.busy": "2025-03-25T06:45:01.082336Z",
     "iopub.status.idle": "2025-03-25T06:45:01.087583Z",
     "shell.execute_reply": "2025-03-25T06:45:01.087136Z"
    }
   },
   "outputs": [],
   "source": [
    "\"\"\"\n",
    "Analysis:\n",
    "- This dataset appears to study atherosclerosis in SLE patients vs healthy controls\n",
    "- It uses gene expression microarray data, which is suitable for our analysis\n",
    "- Sample characteristics include:\n",
    "  - Gender (Key 1): mostly female with some male participants\n",
    "  - Age (Key 2): ranges from 18 to 71 years\n",
    "  - Disease status: Not explicitly in sample characteristics, but from the background\n",
    "    information we can infer SLE status, which is relevant to the trait (atherosclerosis)\n",
    "\"\"\"\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# This dataset uses \"Sureprint G3 Human Gene Expression 8x60K Microarray kit\"\n",
    "is_gene_available = True\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# From the background, we know SLE patients may have atherosclerosis risk\n",
    "# While atherosclerosis itself is not explicitly coded, we can use the SLE status as a proxy\n",
    "# (atherosclerosis is a complication of SLE according to the background)\n",
    "trait_row = None  # No explicit atherosclerosis data\n",
    "age_row = 2  # Age information is available at key 2\n",
    "gender_row = 1  # Gender information is available at key 1\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    # No direct atherosclerosis data\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    # Extract numerical age from string like \"age: 18y\"\n",
    "    try:\n",
    "        if isinstance(value, str) and 'age:' in value:\n",
    "            # Extract the number from strings like \"age: 18y\"\n",
    "            age_str = value.split(':')[1].strip()\n",
    "            return int(age_str.replace('y', ''))\n",
    "        return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # Convert gender values to binary (0=female, 1=male)\n",
    "    try:\n",
    "        if isinstance(value, str) and 'gender:' in value:\n",
    "            gender = value.split(':')[1].strip().lower()\n",
    "            if gender == 'female':\n",
    "                return 0\n",
    "            elif gender == 'male':\n",
    "                return 1\n",
    "        return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Initial filtering to check if dataset is usable\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is None, we skip this substep\n",
    "# However, we can still extract age and gender information\n",
    "if trait_row is not None:\n",
    "    # This block won't execute but is kept for completeness\n",
    "    clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the dataframe\n",
    "    preview = preview_df(clinical_df)\n",
    "    print(\"Clinical Data Preview:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_df.to_csv(out_clinical_data_file, index=False)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "adb00c7a",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4c9014c6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:01.089198Z",
     "iopub.status.busy": "2025-03-25T06:45:01.089077Z",
     "iopub.status.idle": "2025-03-25T06:45:01.502620Z",
     "shell.execute_reply": "2025-03-25T06:45:01.502085Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Atherosclerosis/GSE154851/GSE154851_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (62976, 70)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',\n",
      "       '14', '15', '16', '17', '18', '19', '20'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6975e622",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "29b341a1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:01.504400Z",
     "iopub.status.busy": "2025-03-25T06:45:01.504269Z",
     "iopub.status.idle": "2025-03-25T06:45:01.506603Z",
     "shell.execute_reply": "2025-03-25T06:45:01.506159Z"
    }
   },
   "outputs": [],
   "source": [
    "# The gene identifiers shown are numeric ('1', '2', '3', etc.) which are not human gene symbols.\n",
    "# These are likely probe IDs or internal identifiers that need to be mapped to gene symbols.\n",
    "# For proper biological interpretation, we need to map these to standard gene symbols.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ca2bbe2f",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "17fcf2a6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:01.508480Z",
     "iopub.status.busy": "2025-03-25T06:45:01.508329Z",
     "iopub.status.idle": "2025-03-25T06:45:08.059269Z",
     "shell.execute_reply": "2025-03-25T06:45:08.058605Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'COL', 'ROW', 'NAME', 'SPOT_ID', 'CONTROL_TYPE', 'REFSEQ', 'GB_ACC', 'LOCUSLINK_ID', 'GENE_SYMBOL', 'GENE_NAME', 'UNIGENE_ID', 'ENSEMBL_ID', 'ACCESSION_STRING', 'CHROMOSOMAL_LOCATION', 'CYTOBAND', 'DESCRIPTION', 'GO_ID', 'SEQUENCE']\n",
      "{'ID': ['1', '2', '3', '4', '5'], 'COL': ['192', '192', '192', '192', '192'], 'ROW': [328.0, 326.0, 324.0, 322.0, 320.0], 'NAME': ['GE_BrightCorner', 'DarkCorner', 'DarkCorner', 'A_23_P117082', 'A_33_P3246448'], 'SPOT_ID': ['CONTROL', 'CONTROL', 'CONTROL', 'A_23_P117082', 'A_33_P3246448'], 'CONTROL_TYPE': ['pos', 'pos', 'pos', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'GB_ACC': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'LOCUSLINK_ID': [nan, nan, nan, 50865.0, 23704.0], 'GENE_SYMBOL': [nan, nan, nan, 'HEBP1', 'KCNE4'], 'GENE_NAME': [nan, nan, nan, 'heme binding protein 1', 'potassium voltage-gated channel, Isk-related family, member 4'], 'UNIGENE_ID': [nan, nan, nan, 'Hs.642618', 'Hs.348522'], 'ENSEMBL_ID': [nan, nan, nan, 'ENST00000014930', 'ENST00000281830'], 'ACCESSION_STRING': [nan, nan, nan, 'ref|NM_015987|ens|ENST00000014930|gb|AF117615|gb|BC016277', 'ref|NM_080671|ens|ENST00000281830|tc|THC2655788'], 'CHROMOSOMAL_LOCATION': [nan, nan, nan, 'chr12:13127906-13127847', 'chr2:223920197-223920256'], 'CYTOBAND': [nan, nan, nan, 'hs|12p13.1', 'hs|2q36.1'], 'DESCRIPTION': [nan, nan, nan, 'Homo sapiens heme binding protein 1 (HEBP1), mRNA [NM_015987]', 'Homo sapiens potassium voltage-gated channel, Isk-related family, member 4 (KCNE4), mRNA [NM_080671]'], 'GO_ID': [nan, nan, nan, 'GO:0005488(binding)|GO:0005576(extracellular region)|GO:0005737(cytoplasm)|GO:0005739(mitochondrion)|GO:0005829(cytosol)|GO:0007623(circadian rhythm)|GO:0020037(heme binding)', 'GO:0005244(voltage-gated ion channel activity)|GO:0005249(voltage-gated potassium channel activity)|GO:0006811(ion transport)|GO:0006813(potassium ion transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0016324(apical plasma membrane)'], 'SEQUENCE': [nan, nan, nan, 'AAGGGGGAAAATGTGATTTGTGCCTGATCTTTCATCTGTGATTCTTATAAGAGCTTTGTC', 'GCAAGTCTCTCTGCACCTATTAAAAAGTGATGTATATACTTCCTTCTTATTCTGTTGAGT']}\n",
      "\n",
      "Exploring SOFT file more thoroughly for gene information:\n",
      "!Series_platform_id = GPL16699\n",
      "!Platform_title = Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 (Feature Number version)\n",
      "\n",
      "Found gene-related patterns:\n",
      "#GENE_SYMBOL = Gene Symbol\n",
      "ID\tCOL\tROW\tNAME\tSPOT_ID\tCONTROL_TYPE\tREFSEQ\tGB_ACC\tLOCUSLINK_ID\tGENE_SYMBOL\tGENE_NAME\tUNIGENE_ID\tENSEMBL_ID\tACCESSION_STRING\tCHROMOSOMAL_LOCATION\tCYTOBAND\tDESCRIPTION\tGO_ID\tSEQUENCE\n",
      "8\t192\t314\tA_33_P3319925\tA_33_P3319925\tFALSE\tXM_001133269\tXM_001133269\t730249\tIRG1\timmunoresponsive 1 homolog (mouse)\tHs.160789\tENST00000449753\tens|ENST00000449753|ens|ENST00000377462|ref|XM_001133269|ref|XM_003403661\tchr13:77532009-77532068\ths|13q22.3\timmunoresponsive 1 homolog (mouse) [Source:HGNC Symbol;Acc:33904] [ENST00000449753]\tGO:0019543(propionate catabolic process)|GO:0032496(response to lipopolysaccharide)|GO:0047547(2-methylcitrate dehydratase activity)\tAGAAGACCTAGAAGACTGTTCTGTGTTAACTACACTTCTCAAAGGACCCTCTCCACCAGA\n",
      "21\t192\t288\tA_33_P3261373\tens|ENST00000319813|tc|NP511499\tFALSE\t\t\t\t\t\t\tENST00000319813\tens|ENST00000319813|tc|NP511499\tchr11:48387097-48387038\ths|11p11.2\tolfactory receptor, family 4, subfamily C, member 5 [Source:HGNC Symbol;Acc:14702] [ENST00000319813]\t\tGAAAAATGCCATGAAGCAGCTCTGGAGCCAAATAATCTGGGGTAACAATTTGTGTGATTA\n",
      "25\t192\t280\tA_24_P286898\tA_24_P286898\tFALSE\t\tAB074280\t5599\tMAPK8\tmitogen-activated protein kinase 8\tHs.522924\tENST00000374189\tens|ENST00000374189|ens|ENST00000374182|ens|ENST00000374179|ens|ENST00000374176\tchr10:49647005-49647064\ths|10q11.22\tmitogen-activated protein kinase 8 [Source:HGNC Symbol;Acc:6881] [ENST00000374189]\tGO:0000166(nucleotide binding)|GO:0001503(ossification)|GO:0002224(toll-like receptor signaling pathway)|GO:0002755(MyD88-dependent toll-like receptor signaling pathway)|GO:0002756(MyD88-independent toll-like receptor signaling pathway)|GO:0004674(protein serine/threonine kinase activity)|GO:0004705(JUN kinase activity)|GO:0004707(MAP kinase activity)|GO:0005515(protein binding)|GO:0005524(ATP binding)|GO:0005634(nucleus)|GO:0005654(nucleoplasm)|GO:0005737(cytoplasm)|GO:0005739(mitochondrion)|GO:0005829(cytosol)|GO:0006915(apoptosis)|GO:0006950(response to stress)|GO:0007254(JNK cascade)|GO:0007258(JUN phosphorylation)|GO:0008063(Toll signaling pathway)|GO:0008624(induction of apoptosis by extracellular signals)|GO:0008629(induction of apoptosis by intracellular signals)|GO:0008633(activation of pro-apoptotic gene products)|GO:0009411(response to UV)|GO:0018105(peptidyl-serine phosphorylation)|GO:0018107(peptidyl-threonine phosphorylation)|GO:0031063(regulation of histone deacetylation)|GO:0031558(induction of apoptosis in response to chemical stimulus)|GO:0032091(negative regulation of protein binding)|GO:0032880(regulation of protein localization)|GO:0034130(toll-like receptor 1 signaling pathway)|GO:0034134(toll-like receptor 2 signaling pathway)|GO:0034138(toll-like receptor 3 signaling pathway)|GO:0034142(toll-like receptor 4 signaling pathway)|GO:0035033(histone deacetylase regulator activity)|GO:0042826(histone deacetylase binding)|GO:0043066(negative regulation of apoptosis)|GO:0045087(innate immune response)|GO:0046686(response to cadmium ion)|GO:0048011(nerve growth factor receptor signaling pathway)|GO:0051090(regulation of sequence-specific DNA binding transcription factor activity)|GO:0051403(stress-activated MAPK cascade)|GO:0071260(cellular response to mechanical stimulus)|GO:0090045(positive regulation of deacetylase activity)|GO:2000017(positive regulation of determination of dorsal identity)\tTTTGAGAAGCTGTTAATCTTTTAGCTGAATAATGAAGTTAGACTGAATTACGTGTCTCCC\n",
      "\n",
      "Analyzing ENTREZ_GENE_ID column:\n",
      "\n",
      "Looking for alternative annotation approaches:\n",
      "- Checking for platform ID or accession number in SOFT file\n",
      "Found platform GEO accession: GPL16699\n",
      "\n",
      "Warning: No suitable mapping column found for gene symbols\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Let's explore the SOFT file more thoroughly to find gene symbols\n",
    "print(\"\\nExploring SOFT file more thoroughly for gene information:\")\n",
    "gene_info_patterns = []\n",
    "entrez_to_symbol = {}\n",
    "\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for i, line in enumerate(f):\n",
    "        if i < 1000:  # Check header section for platform info\n",
    "            if '!Series_platform_id' in line or '!Platform_title' in line:\n",
    "                print(line.strip())\n",
    "                \n",
    "        # Look for gene-related columns and patterns in the file\n",
    "        if 'GENE_SYMBOL' in line or 'gene_symbol' in line or 'Symbol' in line:\n",
    "            gene_info_patterns.append(line.strip())\n",
    "            \n",
    "        # Extract a mapping using ENTREZ_GENE_ID if available\n",
    "        if len(gene_info_patterns) < 2 and 'ENTREZ_GENE_ID' in line and '\\t' in line:\n",
    "            parts = line.strip().split('\\t')\n",
    "            if len(parts) >= 2:\n",
    "                try:\n",
    "                    # Attempt to add to mapping - assuming ENTREZ_GENE_ID could help with lookup\n",
    "                    entrez_id = parts[1]\n",
    "                    probe_id = parts[0]\n",
    "                    if entrez_id.isdigit() and entrez_id != probe_id:\n",
    "                        entrez_to_symbol[probe_id] = entrez_id\n",
    "                except:\n",
    "                    pass\n",
    "        \n",
    "        if i > 10000 and len(gene_info_patterns) > 0:  # Limit search but ensure we found something\n",
    "            break\n",
    "\n",
    "# Show some of the patterns found\n",
    "if gene_info_patterns:\n",
    "    print(\"\\nFound gene-related patterns:\")\n",
    "    for pattern in gene_info_patterns[:5]:\n",
    "        print(pattern)\n",
    "else:\n",
    "    print(\"\\nNo explicit gene info patterns found\")\n",
    "\n",
    "# Let's try to match the ENTREZ_GENE_ID to the probe IDs\n",
    "print(\"\\nAnalyzing ENTREZ_GENE_ID column:\")\n",
    "if 'ENTREZ_GENE_ID' in gene_annotation.columns:\n",
    "    # Check if ENTREZ_GENE_ID contains actual Entrez IDs (different from probe IDs)\n",
    "    gene_annotation['ENTREZ_GENE_ID'] = gene_annotation['ENTREZ_GENE_ID'].astype(str)\n",
    "    different_ids = (gene_annotation['ENTREZ_GENE_ID'] != gene_annotation['ID']).sum()\n",
    "    print(f\"Number of entries where ENTREZ_GENE_ID differs from ID: {different_ids}\")\n",
    "    \n",
    "    if different_ids > 0:\n",
    "        print(\"Some ENTREZ_GENE_ID values differ from probe IDs - this could be useful for mapping\")\n",
    "        # Show examples of differing values\n",
    "        diff_examples = gene_annotation[gene_annotation['ENTREZ_GENE_ID'] != gene_annotation['ID']].head(5)\n",
    "        print(diff_examples)\n",
    "    else:\n",
    "        print(\"ENTREZ_GENE_ID appears to be identical to probe ID - not useful for mapping\")\n",
    "\n",
    "# Search for additional annotation information in the dataset\n",
    "print(\"\\nLooking for alternative annotation approaches:\")\n",
    "print(\"- Checking for platform ID or accession number in SOFT file\")\n",
    "\n",
    "platform_id = None\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for i, line in enumerate(f):\n",
    "        if '!Platform_geo_accession' in line:\n",
    "            platform_id = line.split('=')[1].strip().strip('\"')\n",
    "            print(f\"Found platform GEO accession: {platform_id}\")\n",
    "            break\n",
    "        if i > 200:\n",
    "            break\n",
    "\n",
    "# If we don't find proper gene symbol mappings, prepare to use the ENTREZ_GENE_ID as is\n",
    "if 'ENTREZ_GENE_ID' in gene_annotation.columns:\n",
    "    print(\"\\nPreparing provisional gene mapping using ENTREZ_GENE_ID:\")\n",
    "    mapping_data = gene_annotation[['ID', 'ENTREZ_GENE_ID']].copy()\n",
    "    mapping_data.rename(columns={'ENTREZ_GENE_ID': 'Gene'}, inplace=True)\n",
    "    print(f\"Provisional mapping data shape: {mapping_data.shape}\")\n",
    "    print(preview_df(mapping_data, n=5))\n",
    "else:\n",
    "    print(\"\\nWarning: No suitable mapping column found for gene symbols\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ac168a31",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "a1463f96",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:08.061222Z",
     "iopub.status.busy": "2025-03-25T06:45:08.061024Z",
     "iopub.status.idle": "2025-03-25T06:45:09.438931Z",
     "shell.execute_reply": "2025-03-25T06:45:09.438289Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapping data shape: (54295, 2)\n",
      "First 5 rows of mapping data:\n",
      "  ID          Gene\n",
      "3  4         HEBP1\n",
      "4  5         KCNE4\n",
      "5  6        BPIFA3\n",
      "6  7  LOC100129869\n",
      "7  8          IRG1\n",
      "Gene expression data shape after mapping: (20353, 70)\n",
      "First 5 gene symbols after mapping:\n",
      "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2LD1', 'A2M'], dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data shape after normalization: (19847, 70)\n",
      "First 5 normalized gene symbols:\n",
      "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1'], dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to: ../../output/preprocess/Atherosclerosis/gene_data/GSE154851.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine which columns to use for mapping\n",
    "# From the previous analysis, we can see:\n",
    "# - Gene identifiers in gene expression data: numeric IDs like '1', '2', '3' which correspond to the 'ID' column in gene_annotation\n",
    "# - Gene symbols are in the 'GENE_SYMBOL' column of gene_annotation\n",
    "\n",
    "# 2. Create a gene mapping dataframe\n",
    "# We need to map from 'ID' to 'GENE_SYMBOL'\n",
    "mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')\n",
    "print(f\"Mapping data shape: {mapping_data.shape}\")\n",
    "print(\"First 5 rows of mapping data:\")\n",
    "print(mapping_data.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level data to gene-level data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(\"First 5 gene symbols after mapping:\")\n",
    "print(gene_data.index[:5])\n",
    "\n",
    "# Let's normalize gene symbols to standard format\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene expression data shape after normalization: {gene_data.shape}\")\n",
    "print(\"First 5 normalized gene symbols:\")\n",
    "print(gene_data.index[:5])\n",
    "\n",
    "# Save the gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to: {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ff5344f1",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "edbb3789",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:09.440869Z",
     "iopub.status.busy": "2025-03-25T06:45:09.440739Z",
     "iopub.status.idle": "2025-03-25T06:45:10.741909Z",
     "shell.execute_reply": "2025-03-25T06:45:10.741277Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalizing gene symbols...\n",
      "Gene data shape after normalization: (19847, 70)\n",
      "First 10 normalized gene symbols:\n",
      "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT',\n",
      "       'AA06', 'AAA1'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to: ../../output/preprocess/Atherosclerosis/gene_data/GSE154851.csv\n",
      "\n",
      "Preparing clinical data...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Processed clinical data preview:\n",
      "{'GSM4681537': [nan, 18.0, 0.0], 'GSM4681538': [nan, 37.0, 0.0], 'GSM4681539': [nan, 59.0, 0.0], 'GSM4681540': [nan, 36.0, 0.0], 'GSM4681541': [nan, 56.0, 0.0], 'GSM4681542': [nan, 22.0, 0.0], 'GSM4681543': [nan, 53.0, 0.0], 'GSM4681544': [nan, 41.0, 1.0], 'GSM4681545': [nan, 33.0, 0.0], 'GSM4681546': [nan, 52.0, 0.0], 'GSM4681547': [nan, 42.0, 0.0], 'GSM4681548': [nan, 28.0, 0.0], 'GSM4681549': [nan, 45.0, 0.0], 'GSM4681550': [nan, 41.0, 0.0], 'GSM4681551': [nan, 25.0, 0.0], 'GSM4681552': [nan, 34.0, 0.0], 'GSM4681553': [nan, 40.0, 0.0], 'GSM4681554': [nan, 44.0, 0.0], 'GSM4681555': [nan, 42.0, 0.0], 'GSM4681556': [nan, 39.0, 0.0], 'GSM4681557': [nan, 51.0, 0.0], 'GSM4681558': [nan, 41.0, 0.0], 'GSM4681559': [nan, 52.0, 0.0], 'GSM4681560': [nan, 34.0, 0.0], 'GSM4681561': [nan, 21.0, 0.0], 'GSM4681562': [nan, 23.0, 0.0], 'GSM4681563': [nan, 32.0, 0.0], 'GSM4681564': [nan, 39.0, 0.0], 'GSM4681565': [nan, 71.0, 0.0], 'GSM4681566': [nan, 23.0, 0.0], 'GSM4681567': [nan, 44.0, 0.0], 'GSM4681568': [nan, 26.0, 0.0], 'GSM4681569': [nan, 31.0, 0.0], 'GSM4681570': [nan, 24.0, 0.0], 'GSM4681571': [nan, 23.0, 0.0], 'GSM4681572': [nan, 31.0, 1.0], 'GSM4681573': [nan, 30.0, 0.0], 'GSM4681574': [nan, 47.0, 0.0], 'GSM4681575': [nan, 30.0, 0.0], 'GSM4681576': [nan, 24.0, 0.0], 'GSM4681577': [nan, 35.0, 0.0], 'GSM4681578': [nan, 25.0, 0.0], 'GSM4681579': [nan, 25.0, 0.0], 'GSM4681580': [nan, 33.0, 0.0], 'GSM4681581': [nan, 19.0, 0.0], 'GSM4681582': [nan, 23.0, 0.0], 'GSM4681583': [nan, 36.0, 0.0], 'GSM4681584': [nan, 26.0, 0.0], 'GSM4681585': [nan, 27.0, 0.0], 'GSM4681586': [nan, 28.0, 0.0], 'GSM4681587': [nan, 34.0, 0.0], 'GSM4681588': [nan, 30.0, 0.0], 'GSM4681589': [nan, 39.0, 0.0], 'GSM4681590': [nan, 32.0, 0.0], 'GSM4681591': [nan, 26.0, 0.0], 'GSM4681592': [nan, 22.0, 0.0], 'GSM4681593': [nan, 25.0, 0.0], 'GSM4681594': [nan, 32.0, 0.0], 'GSM4681595': [nan, 33.0, 0.0], 'GSM4681596': [nan, 41.0, 0.0], 'GSM4681597': [nan, 31.0, 0.0], 'GSM4681598': [nan, 48.0, 0.0], 'GSM4681599': [nan, 38.0, 0.0], 'GSM4681600': [nan, 30.0, 0.0], 'GSM4681601': [nan, 27.0, 0.0], 'GSM4681602': [nan, 23.0, 0.0], 'GSM4681603': [nan, 41.0, 0.0], 'GSM4681604': [nan, 36.0, 0.0], 'GSM4681605': [nan, 34.0, 0.0], 'GSM4681606': [nan, 54.0, 0.0]}\n",
      "Clinical data saved to: ../../output/preprocess/Atherosclerosis/clinical_data/GSE154851.csv\n",
      "\n",
      "Linking clinical and genetic data...\n",
      "Linked data shape: (70, 19850)\n",
      "Linked data preview (first 5 samples, 5 features):\n",
      "            Atherosclerosis   Age  Gender         A1BG    A1BG-AS1\n",
      "GSM4681537              NaN  18.0     0.0  1152.992618  325.996309\n",
      "GSM4681538              NaN  37.0     0.0   609.393488  143.196744\n",
      "GSM4681539              NaN  59.0     0.0   795.437693  196.218847\n",
      "GSM4681540              NaN  36.0     0.0   950.035308  210.517654\n",
      "GSM4681541              NaN  56.0     0.0  1288.902356  340.701178\n",
      "\n",
      "Handling missing values...\n",
      "Linked data shape after handling missing values: (0, 2)\n",
      "\n",
      "Checking for bias in dataset features...\n",
      "Abnormality detected in the cohort: GSE154851. Preprocessing failed.\n",
      "\n",
      "Dataset validation complete.\n",
      "Dataset usable for association studies: False\n",
      "Note: This GSE154851 dataset contains gene expression data from SLE patients with increased risk of atherosclerosis. While gene expression data is available, explicit atherosclerosis trait data is not provided, making the dataset unsuitable for our specific atherosclerosis association study.\n",
      "Dataset deemed not usable for associative studies. Linked data not saved.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols using NCBI database\n",
    "print(\"Normalizing gene symbols...\")\n",
    "gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n",
    "print(\"First 10 normalized gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Save the normalized gene data\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to: {out_gene_data_file}\")\n",
    "\n",
    "# 2. Extract and prepare clinical data from the matrix file\n",
    "print(\"\\nPreparing clinical data...\")\n",
    "_, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "_, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Since Step 2 identified no atherosclerosis trait data is available,\n",
    "# but we still need to correctly extract age and gender data for completeness\n",
    "# Define conversion functions for age and gender\n",
    "def convert_age(value):\n",
    "    try:\n",
    "        if isinstance(value, str) and 'age:' in value:\n",
    "            # Extract the number from strings like \"age: 18y\"\n",
    "            age_str = value.split(':')[1].strip()\n",
    "            return int(age_str.replace('y', ''))\n",
    "        return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    try:\n",
    "        if isinstance(value, str) and 'gender:' in value:\n",
    "            gender = value.split(':')[1].strip().lower()\n",
    "            if gender == 'female':\n",
    "                return 0\n",
    "            elif gender == 'male':\n",
    "                return 1\n",
    "        return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# Extract demographic data we do have\n",
    "age_row = 2    # Row for age information\n",
    "gender_row = 1  # Row for gender information\n",
    "\n",
    "# Create a processed clinical dataframe with at least demographic information\n",
    "clinical_df = pd.DataFrame()\n",
    "if age_row is not None:\n",
    "    age_data = get_feature_data(clinical_data, age_row, 'Age', convert_age)\n",
    "    clinical_df = pd.concat([clinical_df, age_data], axis=0) if not clinical_df.empty else age_data\n",
    "if gender_row is not None:\n",
    "    gender_data = get_feature_data(clinical_data, gender_row, 'Gender', convert_gender)\n",
    "    clinical_df = pd.concat([clinical_df, gender_data], axis=0) if not clinical_df.empty else gender_data\n",
    "\n",
    "# Add an empty Atherosclerosis column to maintain the expected structure\n",
    "atherosclerosis_row = pd.DataFrame([pd.Series(float('nan'), index=clinical_df.columns)], index=[trait])\n",
    "clinical_df = pd.concat([atherosclerosis_row, clinical_df], axis=0)\n",
    "\n",
    "print(\"Processed clinical data preview:\")\n",
    "print(preview_df(clinical_df))\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to: {out_clinical_data_file}\")\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "print(\"\\nLinking clinical and genetic data...\")\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 samples, 5 features):\")\n",
    "print(linked_data.iloc[:5, :5] if linked_data.shape[0] > 0 and linked_data.shape[1] > 5 else linked_data)\n",
    "\n",
    "# 4. Handle missing values\n",
    "print(\"\\nHandling missing values...\")\n",
    "linked_data_clean = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data_clean.shape}\")\n",
    "\n",
    "# 5. Check for bias in the dataset\n",
    "print(\"\\nChecking for bias in dataset features...\")\n",
    "# Since we know we don't have trait data, we'll set is_biased to False as it's neither biased nor unbiased\n",
    "# The validation function still needs to receive a parameter though\n",
    "is_biased = False\n",
    "\n",
    "# 6. Conduct final quality validation\n",
    "note = \"This GSE154851 dataset contains gene expression data from SLE patients with increased risk of atherosclerosis. While gene expression data is available, explicit atherosclerosis trait data is not provided, making the dataset unsuitable for our specific atherosclerosis association study.\"\n",
    "\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=False,  # No trait data available\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data_clean,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "print(\"\\nDataset validation complete.\")\n",
    "print(f\"Dataset usable for association studies: {is_usable}\")\n",
    "print(f\"Note: {note}\")\n",
    "\n",
    "# 7. Don't save the linked data since it's not usable (no trait information)\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data_clean.to_csv(out_data_file, index=True)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset deemed not usable for associative studies. Linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}