File size: 32,963 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5bb7fab8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:11.739007Z",
     "iopub.status.busy": "2025-03-25T06:45:11.738624Z",
     "iopub.status.idle": "2025-03-25T06:45:11.905128Z",
     "shell.execute_reply": "2025-03-25T06:45:11.904784Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Atherosclerosis\"\n",
    "cohort = \"GSE57691\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Atherosclerosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Atherosclerosis/GSE57691\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Atherosclerosis/GSE57691.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Atherosclerosis/gene_data/GSE57691.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Atherosclerosis/clinical_data/GSE57691.csv\"\n",
    "json_path = \"../../output/preprocess/Atherosclerosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9a6c0af4",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ccbc5304",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:11.906513Z",
     "iopub.status.busy": "2025-03-25T06:45:11.906373Z",
     "iopub.status.idle": "2025-03-25T06:45:12.069320Z",
     "shell.execute_reply": "2025-03-25T06:45:12.068971Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Differential gene expression in human abdominal aortic aneurysm and atherosclerosis\"\n",
      "!Series_summary\t\"The aim of this study was to assess the relative gene expression in human AAA and AOD.\"\n",
      "!Series_overall_design\t\"Genome-wide expression analysis of  abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) specimens obtained from 20 patients with small AAA (mean maximum aortic diameter=54.3±2.3 mm), 29 patients with large AAA (mean maximum aortic diameter=68.4±14.3 mm), and 9 AOD patients (mean maximum aortic diameter=19.6±2.6 mm). Relative aortic gene expression was compared with that of 10 control aortic specimen of organ donors.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['disease state: small AAA', 'disease state: large AAA', 'disease state: AOD', 'disease state: control'], 1: ['subjects: patients with AAA undergoing open surgery to treat AAA', 'subjects: patients with AOD undergoing open surgery to treat chronic lower limb ischemia', 'subjects: heart-beating, brain-dead donors'], 2: ['tissue: full thickness aortic wall biopsies']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2b09505d",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "9b13c358",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:12.070601Z",
     "iopub.status.busy": "2025-03-25T06:45:12.070492Z",
     "iopub.status.idle": "2025-03-25T06:45:12.076206Z",
     "shell.execute_reply": "2025-03-25T06:45:12.075871Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Error processing clinical data: [Errno 2] No such file or directory: '../../input/GEO/Atherosclerosis/GSE57691/clinical_data.csv'\n",
      "Clinical data file not found. This may be expected if data was extracted differently.\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset appears to contain gene expression data\n",
    "# Study title mentions \"Differential gene expression\"\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# From the sample characteristics, we can see:\n",
    "# - disease state (related to Atherosclerosis) is at index 0\n",
    "# - Age is not available \n",
    "# - Gender is not available\n",
    "trait_row = 0\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait value to binary format (0 for control, 1 for disease)\"\"\"\n",
    "    if value is None or not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon if it exists\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert values\n",
    "    if 'control' in value.lower():\n",
    "        return 0\n",
    "    elif 'aod' in value.lower() or 'aaa' in value.lower():\n",
    "        # Both AOD (Aortic Occlusive Disease) and AAA (Abdominal Aortic Aneurysm)\n",
    "        # represent cases of atherosclerosis\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to continuous format\"\"\"\n",
    "    # Since age data is not available, this function is a placeholder\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender value to binary format (0 for female, 1 for male)\"\"\"\n",
    "    # Since gender data is not available, this function is a placeholder\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine if trait data is available (based on whether trait_row is None)\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort info for initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "if trait_row is not None:\n",
    "    # Assuming clinical_data has been loaded in a previous step\n",
    "    try:\n",
    "        # Ensure directory exists\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Read the clinical data from the input directory\n",
    "        clinical_data = pd.read_csv(os.path.join(in_cohort_dir, \"clinical_data.csv\"))\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the dataframe\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Save the selected clinical data\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing clinical data: {e}\")\n",
    "        # If clinical data file doesn't exist, log the error\n",
    "        if not os.path.exists(os.path.join(in_cohort_dir, \"clinical_data.csv\")):\n",
    "            print(\"Clinical data file not found. This may be expected if data was extracted differently.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "58c4fdd7",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "d83d8c76",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:12.077338Z",
     "iopub.status.busy": "2025-03-25T06:45:12.077233Z",
     "iopub.status.idle": "2025-03-25T06:45:12.366044Z",
     "shell.execute_reply": "2025-03-25T06:45:12.365664Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Atherosclerosis/GSE57691/GSE57691_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (39426, 68)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
      "       'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
      "       'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
      "       'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
      "       'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "018c19c8",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "deeba8c9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:12.367326Z",
     "iopub.status.busy": "2025-03-25T06:45:12.367210Z",
     "iopub.status.idle": "2025-03-25T06:45:12.369345Z",
     "shell.execute_reply": "2025-03-25T06:45:12.368956Z"
    }
   },
   "outputs": [],
   "source": [
    "# The identifiers seen in the gene data start with \"ILMN_\" which indicates these are Illumina microarray probe IDs\n",
    "# These are not human gene symbols and need to be mapped to gene symbols for proper analysis\n",
    "# ILMN_ identifiers are specific to Illumina BeadArray technology and require mapping to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8b7e2294",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "614e15fc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:12.370693Z",
     "iopub.status.busy": "2025-03-25T06:45:12.370591Z",
     "iopub.status.idle": "2025-03-25T06:45:18.851160Z",
     "shell.execute_reply": "2025-03-25T06:45:18.850776Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'Species', 'Source', 'Search_Key', 'Transcript', 'ILMN_Gene', 'Source_Reference_ID', 'RefSeq_ID', 'Unigene_ID', 'Entrez_Gene_ID', 'GI', 'Accession', 'Symbol', 'Protein_Product', 'Probe_Id', 'Array_Address_Id', 'Probe_Type', 'Probe_Start', 'SEQUENCE', 'Chromosome', 'Probe_Chr_Orientation', 'Probe_Coordinates', 'Cytoband', 'Definition', 'Ontology_Component', 'Ontology_Process', 'Ontology_Function', 'Synonyms', 'Obsolete_Probe_Id', 'GB_ACC']\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n",
      "\n",
      "Exploring SOFT file more thoroughly for gene information:\n",
      "!Series_platform_id = GPL10558\n",
      "!Platform_title = Illumina HumanHT-12 V4.0 expression beadchip\n",
      "\n",
      "Found gene-related patterns:\n",
      "#Symbol = Gene symbol from the source database\n",
      "ID\tSpecies\tSource\tSearch_Key\tTranscript\tILMN_Gene\tSource_Reference_ID\tRefSeq_ID\tUnigene_ID\tEntrez_Gene_ID\tGI\tAccession\tSymbol\tProtein_Product\tProbe_Id\tArray_Address_Id\tProbe_Type\tProbe_Start\tSEQUENCE\tChromosome\tProbe_Chr_Orientation\tProbe_Coordinates\tCytoband\tDefinition\tOntology_Component\tOntology_Process\tOntology_Function\tSynonyms\tObsolete_Probe_Id\tGB_ACC\n",
      "\n",
      "Analyzing ENTREZ_GENE_ID column:\n",
      "\n",
      "Looking for alternative annotation approaches:\n",
      "- Checking for platform ID or accession number in SOFT file\n",
      "Found platform GEO accession: GPL10558\n",
      "\n",
      "Warning: No suitable mapping column found for gene symbols\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Let's explore the SOFT file more thoroughly to find gene symbols\n",
    "print(\"\\nExploring SOFT file more thoroughly for gene information:\")\n",
    "gene_info_patterns = []\n",
    "entrez_to_symbol = {}\n",
    "\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for i, line in enumerate(f):\n",
    "        if i < 1000:  # Check header section for platform info\n",
    "            if '!Series_platform_id' in line or '!Platform_title' in line:\n",
    "                print(line.strip())\n",
    "                \n",
    "        # Look for gene-related columns and patterns in the file\n",
    "        if 'GENE_SYMBOL' in line or 'gene_symbol' in line or 'Symbol' in line:\n",
    "            gene_info_patterns.append(line.strip())\n",
    "            \n",
    "        # Extract a mapping using ENTREZ_GENE_ID if available\n",
    "        if len(gene_info_patterns) < 2 and 'ENTREZ_GENE_ID' in line and '\\t' in line:\n",
    "            parts = line.strip().split('\\t')\n",
    "            if len(parts) >= 2:\n",
    "                try:\n",
    "                    # Attempt to add to mapping - assuming ENTREZ_GENE_ID could help with lookup\n",
    "                    entrez_id = parts[1]\n",
    "                    probe_id = parts[0]\n",
    "                    if entrez_id.isdigit() and entrez_id != probe_id:\n",
    "                        entrez_to_symbol[probe_id] = entrez_id\n",
    "                except:\n",
    "                    pass\n",
    "        \n",
    "        if i > 10000 and len(gene_info_patterns) > 0:  # Limit search but ensure we found something\n",
    "            break\n",
    "\n",
    "# Show some of the patterns found\n",
    "if gene_info_patterns:\n",
    "    print(\"\\nFound gene-related patterns:\")\n",
    "    for pattern in gene_info_patterns[:5]:\n",
    "        print(pattern)\n",
    "else:\n",
    "    print(\"\\nNo explicit gene info patterns found\")\n",
    "\n",
    "# Let's try to match the ENTREZ_GENE_ID to the probe IDs\n",
    "print(\"\\nAnalyzing ENTREZ_GENE_ID column:\")\n",
    "if 'ENTREZ_GENE_ID' in gene_annotation.columns:\n",
    "    # Check if ENTREZ_GENE_ID contains actual Entrez IDs (different from probe IDs)\n",
    "    gene_annotation['ENTREZ_GENE_ID'] = gene_annotation['ENTREZ_GENE_ID'].astype(str)\n",
    "    different_ids = (gene_annotation['ENTREZ_GENE_ID'] != gene_annotation['ID']).sum()\n",
    "    print(f\"Number of entries where ENTREZ_GENE_ID differs from ID: {different_ids}\")\n",
    "    \n",
    "    if different_ids > 0:\n",
    "        print(\"Some ENTREZ_GENE_ID values differ from probe IDs - this could be useful for mapping\")\n",
    "        # Show examples of differing values\n",
    "        diff_examples = gene_annotation[gene_annotation['ENTREZ_GENE_ID'] != gene_annotation['ID']].head(5)\n",
    "        print(diff_examples)\n",
    "    else:\n",
    "        print(\"ENTREZ_GENE_ID appears to be identical to probe ID - not useful for mapping\")\n",
    "\n",
    "# Search for additional annotation information in the dataset\n",
    "print(\"\\nLooking for alternative annotation approaches:\")\n",
    "print(\"- Checking for platform ID or accession number in SOFT file\")\n",
    "\n",
    "platform_id = None\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for i, line in enumerate(f):\n",
    "        if '!Platform_geo_accession' in line:\n",
    "            platform_id = line.split('=')[1].strip().strip('\"')\n",
    "            print(f\"Found platform GEO accession: {platform_id}\")\n",
    "            break\n",
    "        if i > 200:\n",
    "            break\n",
    "\n",
    "# If we don't find proper gene symbol mappings, prepare to use the ENTREZ_GENE_ID as is\n",
    "if 'ENTREZ_GENE_ID' in gene_annotation.columns:\n",
    "    print(\"\\nPreparing provisional gene mapping using ENTREZ_GENE_ID:\")\n",
    "    mapping_data = gene_annotation[['ID', 'ENTREZ_GENE_ID']].copy()\n",
    "    mapping_data.rename(columns={'ENTREZ_GENE_ID': 'Gene'}, inplace=True)\n",
    "    print(f\"Provisional mapping data shape: {mapping_data.shape}\")\n",
    "    print(preview_df(mapping_data, n=5))\n",
    "else:\n",
    "    print(\"\\nWarning: No suitable mapping column found for gene symbols\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ce33e64f",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "5c175739",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:18.852479Z",
     "iopub.status.busy": "2025-03-25T06:45:18.852361Z",
     "iopub.status.idle": "2025-03-25T06:45:19.819726Z",
     "shell.execute_reply": "2025-03-25T06:45:19.819382Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Determining which columns to use for gene mapping:\n",
      "Using 'ID' column as probe identifier and 'Symbol' column as gene symbol\n",
      "Gene mapping data shape: (44837, 2)\n",
      "Mapping data preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Gene': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB']}\n",
      "Found 44837 probe-to-gene mappings\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data shape after mapping: (19295, 68)\n",
      "First 10 gene symbols after mapping:\n",
      "Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT',\n",
      "       'A4GNT', 'AAA1'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to: ../../output/preprocess/Atherosclerosis/gene_data/GSE57691.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Analyze the gene expression data and gene annotation data to identify matching columns\n",
    "print(\"\\nDetermining which columns to use for gene mapping:\")\n",
    "\n",
    "# Based on the gene expression data, we're using 'ID' as the identifier (ILMN_* format)\n",
    "# From the annotation data preview, 'Symbol' contains gene symbols\n",
    "prob_col = 'ID'\n",
    "gene_col = 'Symbol'\n",
    "\n",
    "print(f\"Using '{prob_col}' column as probe identifier and '{gene_col}' column as gene symbol\")\n",
    "\n",
    "# 2. Extract the gene mapping dataframe using the identified columns\n",
    "mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "print(f\"Gene mapping data shape: {mapping_data.shape}\")\n",
    "print(\"Mapping data preview:\")\n",
    "print(preview_df(mapping_data, n=5))\n",
    "\n",
    "# Check if any mapping exists (non-empty mapping dataframe)\n",
    "if mapping_data.empty:\n",
    "    print(\"Warning: Empty mapping data. No valid probe-to-gene mappings found.\")\n",
    "else:\n",
    "    print(f\"Found {mapping_data.shape[0]} probe-to-gene mappings\")\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(\"First 10 gene symbols after mapping:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Save the gene data for future use\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to: {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1dbd9c6c",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "5777135d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:45:19.821229Z",
     "iopub.status.busy": "2025-03-25T06:45:19.820932Z",
     "iopub.status.idle": "2025-03-25T06:45:30.290472Z",
     "shell.execute_reply": "2025-03-25T06:45:30.290102Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalizing gene symbols...\n",
      "Gene data shape after normalization: (18540, 68)\n",
      "First 10 normalized gene symbols:\n",
      "Index(['A1BG', 'A1CF', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAA1',\n",
      "       'AAAS', 'AACS'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to: ../../output/preprocess/Atherosclerosis/gene_data/GSE57691.csv\n",
      "\n",
      "Preparing clinical data...\n",
      "Clinical data preview:\n",
      "{'GSM1386783': [1.0], 'GSM1386784': [1.0], 'GSM1386785': [1.0], 'GSM1386786': [1.0], 'GSM1386787': [1.0], 'GSM1386788': [1.0], 'GSM1386789': [1.0], 'GSM1386790': [1.0], 'GSM1386791': [1.0], 'GSM1386792': [1.0], 'GSM1386793': [1.0], 'GSM1386794': [1.0], 'GSM1386795': [1.0], 'GSM1386796': [1.0], 'GSM1386797': [1.0], 'GSM1386798': [1.0], 'GSM1386799': [1.0], 'GSM1386800': [1.0], 'GSM1386801': [1.0], 'GSM1386802': [1.0], 'GSM1386803': [1.0], 'GSM1386804': [1.0], 'GSM1386805': [1.0], 'GSM1386806': [1.0], 'GSM1386807': [1.0], 'GSM1386808': [1.0], 'GSM1386809': [1.0], 'GSM1386810': [1.0], 'GSM1386811': [1.0], 'GSM1386812': [1.0], 'GSM1386813': [1.0], 'GSM1386814': [1.0], 'GSM1386815': [1.0], 'GSM1386816': [1.0], 'GSM1386817': [1.0], 'GSM1386818': [1.0], 'GSM1386819': [1.0], 'GSM1386820': [1.0], 'GSM1386821': [1.0], 'GSM1386822': [1.0], 'GSM1386823': [1.0], 'GSM1386824': [1.0], 'GSM1386825': [1.0], 'GSM1386826': [1.0], 'GSM1386827': [1.0], 'GSM1386828': [1.0], 'GSM1386829': [1.0], 'GSM1386830': [1.0], 'GSM1386831': [1.0], 'GSM1386832': [1.0], 'GSM1386833': [1.0], 'GSM1386834': [1.0], 'GSM1386835': [1.0], 'GSM1386836': [1.0], 'GSM1386837': [1.0], 'GSM1386838': [1.0], 'GSM1386839': [1.0], 'GSM1386840': [1.0], 'GSM1386841': [0.0], 'GSM1386842': [0.0], 'GSM1386843': [0.0], 'GSM1386844': [0.0], 'GSM1386845': [0.0], 'GSM1386846': [0.0], 'GSM1386847': [0.0], 'GSM1386848': [0.0], 'GSM1386849': [0.0], 'GSM1386850': [0.0]}\n",
      "Clinical data saved to: ../../output/preprocess/Atherosclerosis/clinical_data/GSE57691.csv\n",
      "\n",
      "Linking clinical and genetic data...\n",
      "Linked data shape: (68, 18541)\n",
      "Linked data preview (first 5 rows, 5 columns):\n",
      "            Atherosclerosis      A1BG      A1CF       A2M     A2ML1\n",
      "GSM1386783              1.0  0.374157  1.259392 -3.756228  0.401806\n",
      "GSM1386784              1.0 -2.155580 -2.845751 -0.312673 -1.141962\n",
      "GSM1386785              1.0  0.827840  1.431236 -3.266001  0.617732\n",
      "GSM1386786              1.0 -2.380834 -2.802971 -0.462462 -0.616816\n",
      "GSM1386787              1.0 -2.238556 -3.576343 -0.863015 -0.969759\n",
      "\n",
      "Handling missing values...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data shape after handling missing values: (68, 18541)\n",
      "\n",
      "Checking for bias in dataset features...\n",
      "For the feature 'Atherosclerosis', the least common label is '0.0' with 10 occurrences. This represents 14.71% of the dataset.\n",
      "The distribution of the feature 'Atherosclerosis' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Atherosclerosis/GSE57691.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols using NCBI database\n",
    "print(\"Normalizing gene symbols...\")\n",
    "gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n",
    "print(\"First 10 normalized gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Save the normalized gene data\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to: {out_gene_data_file}\")\n",
    "\n",
    "# 2. Extract and prepare clinical data from the matrix file\n",
    "print(\"\\nPreparing clinical data...\")\n",
    "\n",
    "# Get the clinical data rows\n",
    "_, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "_, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Process clinical data using the parameters defined in Step 2\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=0,  # From Step 2: trait_row = 0\n",
    "    convert_trait=convert_trait,  # Function defined in Step 2\n",
    "    age_row=None,  # From Step 2: age_row = None\n",
    "    convert_age=None,\n",
    "    gender_row=None,  # From Step 2: gender_row = None\n",
    "    convert_gender=None\n",
    ")\n",
    "\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to: {out_clinical_data_file}\")\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "print(\"\\nLinking clinical and genetic data...\")\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "if linked_data.shape[0] > 0 and linked_data.shape[1] > 5:\n",
    "    print(linked_data.iloc[:5, :5])\n",
    "else:\n",
    "    print(linked_data)\n",
    "\n",
    "# 4. Handle missing values\n",
    "print(\"\\nHandling missing values...\")\n",
    "linked_data_clean = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data_clean.shape}\")\n",
    "\n",
    "# 5. Check for bias in the dataset\n",
    "print(\"\\nChecking for bias in dataset features...\")\n",
    "is_biased, linked_data_clean = judge_and_remove_biased_features(linked_data_clean, trait)\n",
    "\n",
    "# 6. Conduct final quality validation\n",
    "note = \"This GSE57691 dataset contains gene expression data from patients with abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) compared to control subjects. The dataset focuses on atherosclerosis-related vascular changes.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data_clean,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 7. Save the linked data if it's usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data_clean.to_csv(out_data_file, index=True)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset deemed not usable for associative studies. Linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}