File size: 46,105 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "27a327e3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:47:06.124217Z",
     "iopub.status.busy": "2025-03-25T06:47:06.124099Z",
     "iopub.status.idle": "2025-03-25T06:47:06.287491Z",
     "shell.execute_reply": "2025-03-25T06:47:06.287025Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Atrial_Fibrillation\"\n",
    "cohort = \"GSE235307\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Atrial_Fibrillation\"\n",
    "in_cohort_dir = \"../../input/GEO/Atrial_Fibrillation/GSE235307\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Atrial_Fibrillation/GSE235307.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Atrial_Fibrillation/gene_data/GSE235307.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Atrial_Fibrillation/clinical_data/GSE235307.csv\"\n",
    "json_path = \"../../output/preprocess/Atrial_Fibrillation/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b05578ac",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "686f22a4",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:47:06.288827Z",
     "iopub.status.busy": "2025-03-25T06:47:06.288673Z",
     "iopub.status.idle": "2025-03-25T06:47:06.725364Z",
     "shell.execute_reply": "2025-03-25T06:47:06.724771Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression and atrial fibrillation prediction\"\n",
      "!Series_summary\t\"The aim of this study was to identify a blood gene expression profile that predicts atrial fibrillation in heart failure patients\"\n",
      "!Series_overall_design\t\"Cardiac blood samples were obtained from the coronary sinus during CRT-D (Cardiac Resynchronization Therapy - Defibrillator) placement in heart failure patients. Patients were followed during 1 year.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: Whole blood'], 1: ['gender: Male', 'gender: Female'], 2: ['age: 63', 'age: 60', 'age: 72', 'age: 66', 'age: 70', 'age: 64', 'age: 61', 'age: 44', 'age: 54', 'age: 50', 'age: 79', 'age: 51', 'age: 55', 'age: 67', 'age: 52', 'age: 73', 'age: 76', 'age: 43', 'age: 68', 'age: 78', 'age: 69', 'age: 57', 'age: 59', 'age: 53', 'age: 65', 'age: 56', 'age: 74', 'age: 38', 'age: 71', 'age: 37'], 3: ['cardiopathy: ischemic', 'cardiopathy: non ischemic', 'cardiopathy: mixed'], 4: ['cardiac rhythm at start of the study: Sinus rhythm'], 5: ['cardiac rhythm after 1 year follow-up: Sinus rhythm', 'cardiac rhythm after 1 year follow-up: Atrial fibrillation']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3c10713e",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "b0115d97",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:47:06.727170Z",
     "iopub.status.busy": "2025-03-25T06:47:06.727043Z",
     "iopub.status.idle": "2025-03-25T06:47:06.744206Z",
     "shell.execute_reply": "2025-03-25T06:47:06.743713Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of extracted clinical features:\n",
      "{'GSM7498589': [0.0, 63.0, 1.0], 'GSM7498590': [0.0, 60.0, 1.0], 'GSM7498591': [0.0, 60.0, 1.0], 'GSM7498592': [0.0, 72.0, 1.0], 'GSM7498593': [0.0, 63.0, 1.0], 'GSM7498594': [0.0, 66.0, 0.0], 'GSM7498595': [0.0, 70.0, 1.0], 'GSM7498596': [0.0, 64.0, 1.0], 'GSM7498597': [0.0, 63.0, 1.0], 'GSM7498598': [0.0, 61.0, 1.0], 'GSM7498599': [0.0, 70.0, 0.0], 'GSM7498600': [0.0, 64.0, 1.0], 'GSM7498601': [0.0, 63.0, 1.0], 'GSM7498602': [0.0, 44.0, 1.0], 'GSM7498603': [0.0, 54.0, 1.0], 'GSM7498604': [0.0, 44.0, 1.0], 'GSM7498605': [0.0, 50.0, 1.0], 'GSM7498606': [1.0, 79.0, 1.0], 'GSM7498607': [0.0, 63.0, 1.0], 'GSM7498608': [0.0, 63.0, 0.0], 'GSM7498609': [1.0, 64.0, 1.0], 'GSM7498610': [0.0, 60.0, 1.0], 'GSM7498611': [0.0, 51.0, 1.0], 'GSM7498612': [0.0, 55.0, 1.0], 'GSM7498613': [0.0, 55.0, 1.0], 'GSM7498614': [1.0, 67.0, 1.0], 'GSM7498615': [0.0, 52.0, 1.0], 'GSM7498616': [0.0, 70.0, 0.0], 'GSM7498617': [0.0, 54.0, 1.0], 'GSM7498618': [0.0, 54.0, 1.0], 'GSM7498619': [0.0, 73.0, 1.0], 'GSM7498620': [0.0, 54.0, 0.0], 'GSM7498621': [0.0, 76.0, 1.0], 'GSM7498622': [0.0, 76.0, 1.0], 'GSM7498623': [0.0, 43.0, 0.0], 'GSM7498624': [0.0, 64.0, 1.0], 'GSM7498625': [0.0, 64.0, 1.0], 'GSM7498626': [0.0, 68.0, 0.0], 'GSM7498627': [0.0, 43.0, 1.0], 'GSM7498628': [1.0, 54.0, 1.0], 'GSM7498629': [0.0, 72.0, 0.0], 'GSM7498630': [0.0, 51.0, 1.0], 'GSM7498631': [0.0, 68.0, 0.0], 'GSM7498632': [0.0, 50.0, 0.0], 'GSM7498633': [0.0, 78.0, 1.0], 'GSM7498634': [1.0, 69.0, 1.0], 'GSM7498635': [0.0, 64.0, 0.0], 'GSM7498636': [0.0, 54.0, 1.0], 'GSM7498637': [0.0, 54.0, 1.0], 'GSM7498638': [0.0, 57.0, 1.0], 'GSM7498639': [0.0, 55.0, 0.0], 'GSM7498640': [0.0, 60.0, 1.0], 'GSM7498641': [0.0, 59.0, 1.0], 'GSM7498642': [0.0, 54.0, 1.0], 'GSM7498643': [0.0, 54.0, 1.0], 'GSM7498644': [0.0, 54.0, 1.0], 'GSM7498645': [0.0, 54.0, 1.0], 'GSM7498646': [0.0, 53.0, 1.0], 'GSM7498647': [0.0, 52.0, 0.0], 'GSM7498648': [0.0, 68.0, 1.0], 'GSM7498649': [0.0, 72.0, 0.0], 'GSM7498650': [0.0, 70.0, 1.0], 'GSM7498651': [0.0, 65.0, 1.0], 'GSM7498652': [0.0, 64.0, 1.0], 'GSM7498653': [0.0, 56.0, 0.0], 'GSM7498654': [0.0, 56.0, 0.0], 'GSM7498655': [0.0, 63.0, 1.0], 'GSM7498656': [0.0, 57.0, 1.0], 'GSM7498657': [0.0, 63.0, 1.0], 'GSM7498658': [0.0, 68.0, 1.0], 'GSM7498659': [0.0, 66.0, 0.0], 'GSM7498660': [0.0, 74.0, 0.0], 'GSM7498661': [0.0, 38.0, 1.0], 'GSM7498662': [0.0, 56.0, 1.0], 'GSM7498663': [0.0, 57.0, 1.0], 'GSM7498664': [0.0, 71.0, 0.0], 'GSM7498665': [1.0, 78.0, 0.0], 'GSM7498666': [0.0, 51.0, 1.0], 'GSM7498667': [0.0, 50.0, 1.0], 'GSM7498668': [0.0, 37.0, 1.0], 'GSM7498669': [0.0, 37.0, 1.0], 'GSM7498670': [0.0, 70.0, 0.0], 'GSM7498671': [0.0, 72.0, 0.0], 'GSM7498672': [0.0, 73.0, 1.0], 'GSM7498673': [0.0, 69.0, 0.0], 'GSM7498674': [0.0, 69.0, 0.0], 'GSM7498675': [1.0, 63.0, 1.0], 'GSM7498676': [0.0, 62.0, 0.0], 'GSM7498677': [0.0, 59.0, 0.0], 'GSM7498678': [0.0, 67.0, 1.0], 'GSM7498679': [0.0, 76.0, 1.0], 'GSM7498680': [0.0, 63.0, 1.0], 'GSM7498681': [0.0, 55.0, 1.0], 'GSM7498682': [0.0, 57.0, 1.0], 'GSM7498683': [0.0, 53.0, 1.0], 'GSM7498684': [0.0, 59.0, 1.0], 'GSM7498685': [1.0, 77.0, 1.0], 'GSM7498686': [0.0, 54.0, 1.0], 'GSM7498687': [1.0, 64.0, 1.0], 'GSM7498688': [0.0, 75.0, 0.0], 'GSM7498689': [0.0, 75.0, 0.0], 'GSM7498690': [0.0, 72.0, 0.0], 'GSM7498691': [0.0, 58.0, 0.0], 'GSM7498692': [0.0, 75.0, 1.0], 'GSM7498693': [0.0, 78.0, 1.0], 'GSM7498694': [0.0, 58.0, 1.0], 'GSM7498695': [0.0, 64.0, 1.0], 'GSM7498696': [0.0, 63.0, 1.0], 'GSM7498697': [0.0, 61.0, 1.0], 'GSM7498698': [0.0, 60.0, 1.0], 'GSM7498699': [0.0, 59.0, 0.0], 'GSM7498700': [0.0, 68.0, 1.0], 'GSM7498701': [0.0, 77.0, 1.0], 'GSM7498702': [1.0, 57.0, 1.0], 'GSM7498703': [0.0, 62.0, 0.0], 'GSM7498704': [1.0, 66.0, 1.0], 'GSM7498705': [1.0, 57.0, 1.0], 'GSM7498706': [1.0, 65.0, 1.0], 'GSM7498707': [0.0, 59.0, 1.0]}\n",
      "Clinical features saved to ../../output/preprocess/Atrial_Fibrillation/clinical_data/GSE235307.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine gene expression data availability\n",
    "# This dataset appears to be about gene expression in blood samples from heart failure patients\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Identify keys in the sample characteristics dictionary\n",
    "\n",
    "# For trait (Atrial_Fibrillation): appears in sample characteristics key 5\n",
    "# We can see patients had either \"Sinus rhythm\" or \"Atrial fibrillation\" after 1 year follow-up\n",
    "trait_row = 5\n",
    "\n",
    "# For age: appears in sample characteristics key 2\n",
    "age_row = 2\n",
    "\n",
    "# For gender: appears in sample characteristics key 1\n",
    "gender_row = 1\n",
    "\n",
    "# 2.2 Define conversion functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait value to binary (0 or 1)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    value = value.lower()\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"atrial fibrillation\" in value:\n",
    "        return 1\n",
    "    elif \"sinus rhythm\" in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to continuous numeric\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    value = value.lower()\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"female\" in value:\n",
    "        return 0\n",
    "    elif \"male\" in value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save metadata for initial filtering\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Extract clinical features if trait data is available\n",
    "if trait_row is not None:\n",
    "    # Assume clinical_data variable exists from previous step\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical features\n",
    "    print(\"Preview of extracted clinical features:\")\n",
    "    print(preview_df(clinical_features))\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save clinical features to CSV file\n",
    "    clinical_features.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b44a916d",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "5276f61c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:47:06.745793Z",
     "iopub.status.busy": "2025-03-25T06:47:06.745682Z",
     "iopub.status.idle": "2025-03-25T06:47:07.527259Z",
     "shell.execute_reply": "2025-03-25T06:47:07.526603Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Atrial_Fibrillation/GSE235307/GSE235307_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (58717, 119)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16',\n",
      "       '17', '18', '19', '20', '21', '22', '23'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fc8d44fe",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "c2574985",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:47:07.529111Z",
     "iopub.status.busy": "2025-03-25T06:47:07.528972Z",
     "iopub.status.idle": "2025-03-25T06:47:07.531388Z",
     "shell.execute_reply": "2025-03-25T06:47:07.530938Z"
    }
   },
   "outputs": [],
   "source": [
    "# The identifiers '4', '5', '6', etc. are numeric values that do not correspond to human gene symbols\n",
    "# These appear to be row indices or probe IDs that need to be mapped to actual gene symbols\n",
    "# In human genomics, gene symbols would typically be alphanumeric identifiers like \"BRCA1\", \"TP53\", etc.\n",
    "\n",
    "# Since these are numeric identifiers and not recognizable gene symbols,\n",
    "# they will require mapping to standard gene symbols for meaningful analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aba8ee38",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "e72b5cbc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:47:07.533119Z",
     "iopub.status.busy": "2025-03-25T06:47:07.532993Z",
     "iopub.status.idle": "2025-03-25T06:48:01.201314Z",
     "shell.execute_reply": "2025-03-25T06:48:01.200639Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'COL', 'ROW', 'NAME', 'SPOT_ID', 'CONTROL_TYPE', 'REFSEQ', 'GB_ACC', 'LOCUSLINK_ID', 'GENE_SYMBOL', 'GENE_NAME', 'UNIGENE_ID', 'ENSEMBL_ID', 'ACCESSION_STRING', 'CHROMOSOMAL_LOCATION', 'CYTOBAND', 'DESCRIPTION', 'GO_ID', 'SEQUENCE']\n",
      "{'ID': ['1', '2', '3', '4', '5'], 'COL': ['192', '192', '192', '192', '192'], 'ROW': [328.0, 326.0, 324.0, 322.0, 320.0], 'NAME': ['GE_BrightCorner', 'DarkCorner', 'DarkCorner', 'A_23_P117082', 'A_33_P3246448'], 'SPOT_ID': ['CONTROL', 'CONTROL', 'CONTROL', 'A_23_P117082', 'A_33_P3246448'], 'CONTROL_TYPE': ['pos', 'pos', 'pos', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'GB_ACC': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'LOCUSLINK_ID': [nan, nan, nan, 50865.0, 23704.0], 'GENE_SYMBOL': [nan, nan, nan, 'HEBP1', 'KCNE4'], 'GENE_NAME': [nan, nan, nan, 'heme binding protein 1', 'potassium voltage-gated channel, Isk-related family, member 4'], 'UNIGENE_ID': [nan, nan, nan, 'Hs.642618', 'Hs.348522'], 'ENSEMBL_ID': [nan, nan, nan, 'ENST00000014930', 'ENST00000281830'], 'ACCESSION_STRING': [nan, nan, nan, 'ref|NM_015987|ens|ENST00000014930|gb|AF117615|gb|BC016277', 'ref|NM_080671|ens|ENST00000281830|tc|THC2655788'], 'CHROMOSOMAL_LOCATION': [nan, nan, nan, 'chr12:13127906-13127847', 'chr2:223920197-223920256'], 'CYTOBAND': [nan, nan, nan, 'hs|12p13.1', 'hs|2q36.1'], 'DESCRIPTION': [nan, nan, nan, 'Homo sapiens heme binding protein 1 (HEBP1), mRNA [NM_015987]', 'Homo sapiens potassium voltage-gated channel, Isk-related family, member 4 (KCNE4), mRNA [NM_080671]'], 'GO_ID': [nan, nan, nan, 'GO:0005488(binding)|GO:0005576(extracellular region)|GO:0005737(cytoplasm)|GO:0005739(mitochondrion)|GO:0005829(cytosol)|GO:0007623(circadian rhythm)|GO:0020037(heme binding)', 'GO:0005244(voltage-gated ion channel activity)|GO:0005249(voltage-gated potassium channel activity)|GO:0006811(ion transport)|GO:0006813(potassium ion transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0016324(apical plasma membrane)'], 'SEQUENCE': [nan, nan, nan, 'AAGGGGGAAAATGTGATTTGTGCCTGATCTTTCATCTGTGATTCTTATAAGAGCTTTGTC', 'GCAAGTCTCTCTGCACCTATTAAAAAGTGATGTATATACTTCCTTCTTATTCTGTTGAGT']}\n",
      "\n",
      "Analyzing SPOT_ID.1 column for gene symbols:\n",
      "\n",
      "Gene data ID prefix: 4\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'ID' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'COL' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'ROW' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'NAME' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'SPOT_ID' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'REFSEQ' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'GB_ACC' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'LOCUSLINK_ID' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'GENE_SYMBOL' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'GENE_NAME' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'UNIGENE_ID' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'ENSEMBL_ID' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'ACCESSION_STRING' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'CHROMOSOMAL_LOCATION' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'CYTOBAND' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'DESCRIPTION' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'GO_ID' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Checking for columns containing transcript or gene related terms:\n",
      "Column 'NAME' may contain gene-related information\n",
      "Sample values: ['GE_BrightCorner', 'DarkCorner', 'DarkCorner']\n",
      "Column 'GENE_SYMBOL' may contain gene-related information\n",
      "Sample values: [nan, nan, nan]\n",
      "Column 'GENE_NAME' may contain gene-related information\n",
      "Sample values: [nan, nan, nan]\n",
      "Column 'UNIGENE_ID' may contain gene-related information\n",
      "Sample values: [nan, nan, nan]\n",
      "Column 'DESCRIPTION' may contain gene-related information\n",
      "Sample values: [nan, nan, nan]\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Check for gene information in the SPOT_ID.1 column which appears to contain gene names\n",
    "print(\"\\nAnalyzing SPOT_ID.1 column for gene symbols:\")\n",
    "if 'SPOT_ID.1' in gene_annotation.columns:\n",
    "    # Extract a few sample values\n",
    "    sample_values = gene_annotation['SPOT_ID.1'].head(3).tolist()\n",
    "    for i, value in enumerate(sample_values):\n",
    "        print(f\"Sample {i+1} excerpt: {value[:200]}...\")  # Print first 200 chars\n",
    "        # Test the extract_human_gene_symbols function on these values\n",
    "        symbols = extract_human_gene_symbols(value)\n",
    "        print(f\"  Extracted gene symbols: {symbols}\")\n",
    "\n",
    "# Try to find the probe IDs in the gene annotation\n",
    "gene_data_id_prefix = gene_data.index[0].split('_')[0]  # Get prefix of first gene ID\n",
    "print(f\"\\nGene data ID prefix: {gene_data_id_prefix}\")\n",
    "\n",
    "# Look for columns that might match the gene data IDs\n",
    "for col in gene_annotation.columns:\n",
    "    if gene_annotation[col].astype(str).str.contains(gene_data_id_prefix).any():\n",
    "        print(f\"Column '{col}' contains values matching gene data ID pattern\")\n",
    "\n",
    "# Check if there's any column that might contain transcript or gene IDs\n",
    "print(\"\\nChecking for columns containing transcript or gene related terms:\")\n",
    "for col in gene_annotation.columns:\n",
    "    if any(term in col.upper() for term in ['GENE', 'TRANSCRIPT', 'SYMBOL', 'NAME', 'DESCRIPTION']):\n",
    "        print(f\"Column '{col}' may contain gene-related information\")\n",
    "        # Show sample values\n",
    "        print(f\"Sample values: {gene_annotation[col].head(3).tolist()}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1ea40721",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "9afd6753",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:48:01.203235Z",
     "iopub.status.busy": "2025-03-25T06:48:01.203093Z",
     "iopub.status.idle": "2025-03-25T06:48:04.555497Z",
     "shell.execute_reply": "2025-03-25T06:48:04.554852Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Sample values in the mapping columns:\n",
      "Probe column 'ID' values: ['1', '2', '3', '4', '5']\n",
      "Gene column 'GENE_SYMBOL' values: [nan, nan, nan, 'HEBP1', 'KCNE4']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene mapping shape: (54295, 2)\n",
      "Gene mapping preview:\n",
      "{'ID': ['4', '5', '6', '7', '8'], 'Gene': ['HEBP1', 'KCNE4', 'BPIFA3', 'LOC100129869', 'IRG1']}\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data after mapping, shape: (20353, 119)\n",
      "First 5 gene symbols after mapping:\n",
      "['A1BG', 'A1BG-AS1', 'A1CF', 'A2LD1', 'A2M']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data saved to ../../output/preprocess/Atrial_Fibrillation/gene_data/GSE235307.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the key columns for mapping\n",
    "prob_col = 'ID'  # The numeric identifiers in gene_data (4, 5, 6, etc.)\n",
    "gene_col = 'GENE_SYMBOL'  # The gene symbols (HEBP1, KCNE4, etc.)\n",
    "\n",
    "# Let's verify the structure of our gene annotation dataframe\n",
    "print(\"\\nSample values in the mapping columns:\")\n",
    "print(f\"Probe column '{prob_col}' values: {gene_annotation[prob_col].head().tolist()}\")\n",
    "print(f\"Gene column '{gene_col}' values: {gene_annotation[gene_col].head().tolist()}\")\n",
    "\n",
    "# 2. Get the gene mapping dataframe\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "print(f\"\\nGene mapping shape: {gene_mapping.shape}\")\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(gene_mapping))\n",
    "\n",
    "# 3. Convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "print(f\"\\nGene expression data after mapping, shape: {gene_data.shape}\")\n",
    "print(\"First 5 gene symbols after mapping:\")\n",
    "print(gene_data.index[:5].tolist())\n",
    "\n",
    "# Save the gene expression data to a CSV file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "210d9635",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "3e13de63",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:48:04.557478Z",
     "iopub.status.busy": "2025-03-25T06:48:04.557345Z",
     "iopub.status.idle": "2025-03-25T06:48:20.674067Z",
     "shell.execute_reply": "2025-03-25T06:48:20.673392Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape before normalization: (20353, 119)\n",
      "Gene data shape after normalization: (19847, 119)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene expression data saved to ../../output/preprocess/Atrial_Fibrillation/gene_data/GSE235307.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original clinical data preview:\n",
      "         !Sample_geo_accession  \\\n",
      "0  !Sample_characteristics_ch1   \n",
      "1  !Sample_characteristics_ch1   \n",
      "2  !Sample_characteristics_ch1   \n",
      "3  !Sample_characteristics_ch1   \n",
      "4  !Sample_characteristics_ch1   \n",
      "\n",
      "                                          GSM7498589  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 63   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498590  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 60   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498591  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 60   \n",
      "3                          cardiopathy: non ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498592  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 72   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498593  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 63   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498594  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                     gender: Female   \n",
      "2                                            age: 66   \n",
      "3                          cardiopathy: non ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498595  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 70   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498596  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 64   \n",
      "3                          cardiopathy: non ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498597  ...  \\\n",
      "0                                tissue: Whole blood  ...   \n",
      "1                                       gender: Male  ...   \n",
      "2                                            age: 63  ...   \n",
      "3                              cardiopathy: ischemic  ...   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...  ...   \n",
      "\n",
      "                                          GSM7498698  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 60   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498699  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                     gender: Female   \n",
      "2                                            age: 59   \n",
      "3                          cardiopathy: non ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498700  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 68   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498701  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 77   \n",
      "3                          cardiopathy: non ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498702  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 57   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498703  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                     gender: Female   \n",
      "2                                            age: 62   \n",
      "3                          cardiopathy: non ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498704  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 66   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498705  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 57   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498706  \\\n",
      "0                                tissue: Whole blood   \n",
      "1                                       gender: Male   \n",
      "2                                            age: 65   \n",
      "3                              cardiopathy: ischemic   \n",
      "4  cardiac rhythm at start of the study: Sinus rh...   \n",
      "\n",
      "                                          GSM7498707  \n",
      "0                                tissue: Whole blood  \n",
      "1                                       gender: Male  \n",
      "2                                            age: 59  \n",
      "3                              cardiopathy: ischemic  \n",
      "4  cardiac rhythm at start of the study: Sinus rh...  \n",
      "\n",
      "[5 rows x 120 columns]\n",
      "Selected clinical data shape: (3, 119)\n",
      "Clinical data preview:\n",
      "                     GSM7498589  GSM7498590  GSM7498591  GSM7498592  \\\n",
      "Atrial_Fibrillation         0.0         0.0         0.0         0.0   \n",
      "Age                        63.0        60.0        60.0        72.0   \n",
      "Gender                      1.0         1.0         1.0         1.0   \n",
      "\n",
      "                     GSM7498593  GSM7498594  GSM7498595  GSM7498596  \\\n",
      "Atrial_Fibrillation         0.0         0.0         0.0         0.0   \n",
      "Age                        63.0        66.0        70.0        64.0   \n",
      "Gender                      1.0         0.0         1.0         1.0   \n",
      "\n",
      "                     GSM7498597  GSM7498598  ...  GSM7498698  GSM7498699  \\\n",
      "Atrial_Fibrillation         0.0         0.0  ...         0.0         0.0   \n",
      "Age                        63.0        61.0  ...        60.0        59.0   \n",
      "Gender                      1.0         1.0  ...         1.0         0.0   \n",
      "\n",
      "                     GSM7498700  GSM7498701  GSM7498702  GSM7498703  \\\n",
      "Atrial_Fibrillation         0.0         0.0         1.0         0.0   \n",
      "Age                        68.0        77.0        57.0        62.0   \n",
      "Gender                      1.0         1.0         1.0         0.0   \n",
      "\n",
      "                     GSM7498704  GSM7498705  GSM7498706  GSM7498707  \n",
      "Atrial_Fibrillation         1.0         1.0         1.0         0.0  \n",
      "Age                        66.0        57.0        65.0        59.0  \n",
      "Gender                      1.0         1.0         1.0         1.0  \n",
      "\n",
      "[3 rows x 119 columns]\n",
      "Linked data shape before processing: (119, 19850)\n",
      "Linked data preview (first 5 rows, 5 columns):\n",
      "            Atrial_Fibrillation   Age  Gender         A1BG    A1BG-AS1\n",
      "GSM7498589                  0.0  63.0     1.0  1215.921532  167.933502\n",
      "GSM7498590                  0.0  60.0     1.0  1042.240181  156.514231\n",
      "GSM7498591                  0.0  60.0     1.0   860.505266  153.778492\n",
      "GSM7498592                  0.0  72.0     1.0  1016.786080  164.688762\n",
      "GSM7498593                  0.0  63.0     1.0   930.371907  153.624856\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (119, 19850)\n",
      "For the feature 'Atrial_Fibrillation', the least common label is '1.0' with 13 occurrences. This represents 10.92% of the dataset.\n",
      "Quartiles for 'Age':\n",
      "  25%: 55.0\n",
      "  50% (Median): 63.0\n",
      "  75%: 68.0\n",
      "Min: 37.0\n",
      "Max: 79.0\n",
      "For the feature 'Gender', the least common label is '0.0' with 32 occurrences. This represents 26.89% of the dataset.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Atrial_Fibrillation/GSE235307.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "# Use normalize_gene_symbols_in_index to standardize gene symbols\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Load the actual clinical data from the matrix file that was previously obtained in Step 1\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Get preview of clinical data to understand its structure\n",
    "print(\"Original clinical data preview:\")\n",
    "print(clinical_data.head())\n",
    "\n",
    "# 2. If we have trait data available, proceed with linking\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features using the original clinical data\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "\n",
    "    print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(selected_clinical_df.head())\n",
    "\n",
    "    # Link the clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "    print(f\"Linked data shape before processing: {linked_data.shape}\")\n",
    "    print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "    print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Empty dataframe\")\n",
    "\n",
    "    # 3. Handle missing values\n",
    "    try:\n",
    "        linked_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error handling missing values: {e}\")\n",
    "        linked_data = pd.DataFrame()  # Create empty dataframe if error occurs\n",
    "\n",
    "    # 4. Check for bias in features\n",
    "    if not linked_data.empty and linked_data.shape[0] > 0:\n",
    "        # Check if trait is biased\n",
    "        trait_type = 'binary' if len(linked_data[trait].unique()) <= 2 else 'continuous'\n",
    "        if trait_type == \"binary\":\n",
    "            is_biased = judge_binary_variable_biased(linked_data, trait)\n",
    "        else:\n",
    "            is_biased = judge_continuous_variable_biased(linked_data, trait)\n",
    "            \n",
    "        # Remove biased demographic features\n",
    "        if \"Age\" in linked_data.columns:\n",
    "            age_biased = judge_continuous_variable_biased(linked_data, 'Age')\n",
    "            if age_biased:\n",
    "                linked_data = linked_data.drop(columns='Age')\n",
    "                \n",
    "        if \"Gender\" in linked_data.columns:\n",
    "            gender_biased = judge_binary_variable_biased(linked_data, 'Gender')\n",
    "            if gender_biased:\n",
    "                linked_data = linked_data.drop(columns='Gender')\n",
    "    else:\n",
    "        is_biased = True\n",
    "        print(\"Cannot check for bias as dataframe is empty or has no rows after missing value handling\")\n",
    "\n",
    "    # 5. Validate and save cohort information\n",
    "    note = \"\"\n",
    "    if linked_data.empty or linked_data.shape[0] == 0:\n",
    "        note = \"Dataset contains gene expression data related to atrial fibrillation after cardiac surgery, but linking clinical and genetic data failed, possibly due to mismatched sample IDs.\"\n",
    "    else:\n",
    "        note = \"Dataset contains gene expression data for atrial fibrillation after cardiac surgery, which is relevant to arrhythmia research.\"\n",
    "    \n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=True,\n",
    "        is_biased=is_biased,\n",
    "        df=linked_data,\n",
    "        note=note\n",
    "    )\n",
    "\n",
    "    # 6. Save the linked data if usable\n",
    "    if is_usable:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"Dataset is not usable for analysis. No linked data file saved.\")\n",
    "else:\n",
    "    # If no trait data available, validate with trait_available=False\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=True,  # Set to True since we can't use data without trait\n",
    "        df=pd.DataFrame(),  # Empty DataFrame\n",
    "        note=\"Dataset contains gene expression data but lacks proper clinical trait information for arrhythmia analysis.\"\n",
    "    )\n",
    "    \n",
    "    print(\"Dataset is not usable for arrhythmia analysis due to lack of clinical trait data. No linked data file saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}