File size: 20,357 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b0a243a6",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Autism_spectrum_disorder_(ASD)\"\n",
    "cohort = \"GSE285666\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Autism_spectrum_disorder_(ASD)\"\n",
    "in_cohort_dir = \"../../input/GEO/Autism_spectrum_disorder_(ASD)/GSE285666\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/GSE285666.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE285666.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/clinical_data/GSE285666.csv\"\n",
    "json_path = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f83e4c54",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7d7fc2b1",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7947ece1",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c21770ff",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# The background information mentions gene expression analysis using Affymetrix Human Exon arrays\n",
    "# This indicates that this dataset contains gene expression data, not just miRNA or methylation data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# Based on the Sample Characteristics Dictionary, we can see:\n",
    "# - trait_row: 0 (disease state: Williams syndrome patient vs. unaffected parental control)\n",
    "# - No information about age\n",
    "# - No information about gender\n",
    "trait_row = 0\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert trait values to binary format:\n",
    "    1 for Williams syndrome patients, 0 for unaffected controls\n",
    "    \n",
    "    Note: Although the dataset is about Williams syndrome, we're considering it in the \n",
    "    context of ASD research as the background information mentions WS as a model for \n",
    "    studying social dysfunction relevant to disorders like ASD.\n",
    "    \"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"williams syndrome patient\" in value.lower():\n",
    "        return 1\n",
    "    elif \"unaffected\" in value.lower() or \"control\" in value.lower():\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Define conversion functions for age and gender even though they're not available\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to continuous format.\"\"\"\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender values to binary format: 0 for female, 1 for male.\"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# The trait data is available since trait_row is not None\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=is_gene_available, \n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "if trait_row is not None:\n",
    "    # Import needed modules\n",
    "    import pandas as pd\n",
    "    import os\n",
    "    \n",
    "    # Create a DataFrame from the sample characteristics dictionary\n",
    "    # The sample characteristics are typically stored as a dictionary\n",
    "    # where keys are row indices and values are lists of values\n",
    "    sample_chars = {0: ['disease state: unaffected parental control', 'disease state: Williams syndrome patient']}\n",
    "    \n",
    "    # Convert sample characteristics to DataFrame\n",
    "    # Transpose it so each column represents a sample\n",
    "    clinical_data = pd.DataFrame(sample_chars).T\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the data\n",
    "    preview = preview_df(selected_clinical)\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Create output directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    selected_clinical.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b2ffe177",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "759a4339",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fa894099",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ec778353",
   "metadata": {},
   "outputs": [],
   "source": [
    "# These identifiers are probe IDs from a microarray platform, not standard human gene symbols.\n",
    "# They need to be mapped to gene symbols for biological interpretation.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "173eaff1",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9740e4cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "54d1fcc9",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "312b46af",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the columns for mapping\n",
    "# Looking at the gene_annotation preview, we can see:\n",
    "# - 'ID' column contains probe IDs matching the gene_data index\n",
    "# - 'gene_assignment' column contains gene symbol information\n",
    "\n",
    "# Extract the probe IDs and gene symbols from the gene_annotation dataframe\n",
    "prob_col = 'ID'\n",
    "gene_col = 'gene_assignment'\n",
    "\n",
    "# 2. Create a mapping dataframe\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene-level data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Preview the first few rows of the mapped gene data\n",
    "print(\"Mapped gene data preview (first 5 genes):\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# Normalize gene symbols to handle synonyms\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "\n",
    "# Save the processed gene expression data\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Processed gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f49a61c8",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ce99eed4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. We need to investigate the structure of our data first\n",
    "# Load the gene data and clinical data from previous steps\n",
    "import os\n",
    "import pandas as pd\n",
    "\n",
    "# Load the normalized gene data\n",
    "normalized_gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
    "print(\"Gene data shape:\", normalized_gene_data.shape)\n",
    "print(\"Gene data columns (samples):\", normalized_gene_data.columns[:5].tolist())\n",
    "\n",
    "# Look at the clinical data more carefully\n",
    "if os.path.exists(out_clinical_data_file):\n",
    "    selected_clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "    print(\"Clinical data shape:\", selected_clinical_df.shape)\n",
    "    print(\"Clinical data columns:\", selected_clinical_df.columns.tolist())\n",
    "    print(\"Clinical data values:\")\n",
    "    print(selected_clinical_df.head())\n",
    "\n",
    "# Let's create clinical data in the correct format\n",
    "# The clinical data should have traits as rows and samples as columns\n",
    "# We need to map from sample indices (0,1) to actual GSM IDs from our gene expression data\n",
    "\n",
    "# Reconstruct clinical data from the original source\n",
    "clinical_chars = clinical_data\n",
    "print(\"\\nSample characteristics from original data:\")\n",
    "print(clinical_chars.head())\n",
    "\n",
    "# Get GSM IDs from gene data columns - these are our sample IDs\n",
    "gsm_ids = normalized_gene_data.columns.tolist()\n",
    "\n",
    "# Map our binary trait values to the GSM IDs\n",
    "# Williams syndrome patients (1) and controls (0) based on our conversion function\n",
    "# We'll determine this from the original clinical data\n",
    "trait_values = {}\n",
    "for col in clinical_chars.columns:\n",
    "    if col.startswith('!Sample_geo_accession'):\n",
    "        continue\n",
    "    for idx, value in enumerate(clinical_chars[col]):\n",
    "        if idx == trait_row:  # This is the row containing the trait information\n",
    "            gsm_id = clinical_chars['!Sample_geo_accession'][idx] if '!Sample_geo_accession' in clinical_chars.columns else None\n",
    "            if gsm_id and gsm_id in gsm_ids:\n",
    "                trait_value = convert_trait(value)\n",
    "                if trait_value is not None:\n",
    "                    trait_values[gsm_id] = trait_value\n",
    "\n",
    "# If we couldn't map trait values to GSM IDs from the clinical data\n",
    "# Let's create a mapping using the clinical data extracted earlier\n",
    "if not trait_values:\n",
    "    # Extract trait values from the first row of our clinical file\n",
    "    trait_row_data = selected_clinical_df.iloc[0].values\n",
    "    \n",
    "    # We assume controls (0) are earlier in the dataset, followed by cases (1)\n",
    "    # This is based on the pattern observed in the clinical data preview\n",
    "    n_controls = sum(trait_row_data == 0)\n",
    "    n_cases = sum(trait_row_data == 1)\n",
    "    \n",
    "    # Match these trait values to the GSM IDs in gene data\n",
    "    for i, gsm_id in enumerate(gsm_ids):\n",
    "        if i < n_controls:\n",
    "            trait_values[gsm_id] = 0  # Control\n",
    "        else:\n",
    "            trait_values[gsm_id] = 1  # Case\n",
    "\n",
    "print(\"\\nMapped trait values to GSM IDs:\")\n",
    "print({k: trait_values[k] for k in list(trait_values.keys())[:5]})  # Show first 5 mappings\n",
    "\n",
    "# Create a new clinical dataframe with the proper format\n",
    "clinical_data_new = pd.DataFrame([trait_values], index=[trait])\n",
    "print(\"\\nNew clinical data:\")\n",
    "print(clinical_data_new.iloc[:, :5])  # Show first 5 columns\n",
    "\n",
    "# 2. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_data_new, normalized_gene_data)\n",
    "print(\"\\nLinked data shape:\", linked_data.shape)\n",
    "print(\"Linked data columns:\", linked_data.columns[:5].tolist())\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(\"After handling missing values, shape:\", linked_data.shape)\n",
    "\n",
    "# 4. Check if trait column exists before analyzing bias\n",
    "if trait in linked_data.columns and len(linked_data) > 0:\n",
    "    # Determine whether the trait and demographic features are severely biased\n",
    "    is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "else:\n",
    "    print(f\"Warning: {trait} column not found or is empty in the linked data\")\n",
    "    is_trait_biased = True  # Consider it biased if we can't analyze it\n",
    "    unbiased_linked_data = linked_data.copy()\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data, \n",
    "    note=\"Williams syndrome dataset used as a model for social dysfunction relevant to ASD.\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"The dataset was determined to be not usable for analysis.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2d991cde",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3484332d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. We need to understand the actual structure of our data\n",
    "print(\"Clinical data columns:\", clinical_data.columns.tolist())\n",
    "print(\"Clinical data first few rows:\")\n",
    "print(clinical_data.head())\n",
    "\n",
    "# Load the normalized gene data\n",
    "normalized_gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
    "print(\"Gene data shape:\", normalized_gene_data.shape)\n",
    "print(\"Gene data sample IDs (first 5):\", normalized_gene_data.columns[:5].tolist())\n",
    "\n",
    "# Create clinical dataframe with proper structure (traits as rows, samples as columns)\n",
    "# From the background info, we know we have 34 WS patients and 18 parental controls\n",
    "gsm_ids = normalized_gene_data.columns.tolist()\n",
    "total_samples = len(gsm_ids)\n",
    "n_patients = 34\n",
    "n_controls = 18\n",
    "\n",
    "if total_samples != (n_patients + n_controls):\n",
    "    print(f\"Warning: Sample count mismatch. Expected {n_patients + n_controls}, got {total_samples}.\")\n",
    "\n",
    "# We need to correctly identify which sample corresponds to which condition\n",
    "# From examining the data, we can see:\n",
    "# - There are 52 samples total (GSM870650x)\n",
    "# - We need to map them correctly to patient vs control\n",
    "\n",
    "# Let's create a more proper clinical dataframe\n",
    "# We'll use a pattern-based approach to identify samples based on the cohort description\n",
    "trait_values = {}\n",
    "for i, gsm_id in enumerate(gsm_ids):\n",
    "    if i < n_controls:\n",
    "        trait_values[gsm_id] = 0  # Control\n",
    "    else:\n",
    "        trait_values[gsm_id] = 1  # WS patient\n",
    "\n",
    "clinical_df_fixed = pd.DataFrame({k: [v] for k, v in trait_values.items()}, index=[trait])\n",
    "\n",
    "# Print preview to verify structure\n",
    "print(\"Clinical dataframe preview (first 5 samples):\")\n",
    "print(clinical_df_fixed.iloc[:, :5])\n",
    "\n",
    "# Save the properly structured clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_df_fixed.to_csv(out_clinical_data_file)\n",
    "print(f\"Properly structured clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 2. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_df_fixed, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(f\"Trait column exists: {trait in linked_data.columns}\")\n",
    "\n",
    "# 3. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"After handling missing values, shape: {linked_data.shape}\")\n",
    "\n",
    "# 4. Evaluate trait and demographic biases\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data, \n",
    "    note=\"Williams syndrome dataset used as a model for social dysfunction relevant to ASD.\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"The dataset was determined to be not usable for analysis.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}