File size: 36,019 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "1e249621",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:52:54.571183Z",
     "iopub.status.busy": "2025-03-25T06:52:54.571075Z",
     "iopub.status.idle": "2025-03-25T06:52:54.734208Z",
     "shell.execute_reply": "2025-03-25T06:52:54.733865Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Autism_spectrum_disorder_(ASD)\"\n",
    "cohort = \"GSE57802\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Autism_spectrum_disorder_(ASD)\"\n",
    "in_cohort_dir = \"../../input/GEO/Autism_spectrum_disorder_(ASD)/GSE57802\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/GSE57802.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE57802.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/clinical_data/GSE57802.csv\"\n",
    "json_path = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4a785e43",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b06f2a9d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:52:54.735622Z",
     "iopub.status.busy": "2025-03-25T06:52:54.735481Z",
     "iopub.status.idle": "2025-03-25T06:52:54.942564Z",
     "shell.execute_reply": "2025-03-25T06:52:54.942207Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Transcriptome Profiling of patients with 16p11.2 rearrangements\"\n",
      "!Series_summary\t\"The 600kb BP4-BP5 16p11.2 CNV (copy number variant) is associated with neuroanatomical, neurocognitive and metabolic disorders.  These recurrent rearrangements are associated with reciprocal phenotypes such as obesity and underweight, macro- and microcephaly, as well as autism spectrum disorder (ASD) and schizophrenia. Here we interrogated the transcriptome of individuals carrying reciprocal CNVs in 16p11.2.\"\n",
      "!Series_summary\t\"The genome-wide transcript perturbations correlated with clinical endophenotypes of the CNV and were enriched for genes associated with ASD. We uncovered a significant correlation between copy number changes and expression levels of genes mutated in ciliopathies.\"\n",
      "!Series_overall_design\t\"Transcriptome profiles of lymphoblastoid cell lines of 50 16p11.2 deletion carriers, 31 16p11.2 duplication carriers and 17 controls.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell type: lymphoblastoid'], 1: ['gender: M', 'gender: F'], 2: ['age: 46', 'age: 33', 'age: NA', 'age: 22', 'age: 52', 'age: 25', 'age: 31', 'age: 60', 'age: 40', 'age: 50', 'age: 51', 'age: 39', 'age: 6', 'age: 56', 'age: 16', 'age: 41', 'age: 35', 'age: 4', 'age: 10', 'age: 12', 'age: 7', 'age: 1.4', 'age: 38', 'age: 14.7', 'age: 11', 'age: 12.8', 'age: 11.9', 'age: 7.7', 'age: 3.3', 'age: 1.5'], 3: ['copy number 16p11.2: 2', 'copy number 16p11.2: 1', 'copy number 16p11.2: 3'], 4: ['genotype: Control', 'genotype: 600kbdel', 'genotype: 600kbdup'], 5: ['family identifier: 201', 'family identifier: 202', 'family identifier: 203', 'family identifier: 204', 'family identifier: 205', 'family identifier: 206', 'family identifier: 207', 'family identifier: 208', 'family identifier: 209', 'family identifier: 210', 'family identifier: 211', 'family identifier: 212', 'family identifier: 213', 'family identifier: 84', 'family identifier: 63', 'family identifier: 1', 'family identifier: 4', 'family identifier: 5', 'family identifier: 8', 'family identifier: 11', 'family identifier: 12', 'family identifier: 13', 'family identifier: 14', 'family identifier: 15', 'family identifier: 17', 'family identifier: 20', 'family identifier: 23', 'family identifier: 24', 'family identifier: 26', 'family identifier: 28'], 6: ['kinship: unrelated', 'kinship: father', 'kinship: sibling', 'kinship: mother', 'kinship: proband', 'kinship: pat grandfather']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e7dc37fe",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "530ea6ea",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:52:54.943794Z",
     "iopub.status.busy": "2025-03-25T06:52:54.943691Z",
     "iopub.status.idle": "2025-03-25T06:52:54.958510Z",
     "shell.execute_reply": "2025-03-25T06:52:54.958225Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical Data Preview:\n",
      "{'GSM1389621': [0.0, 46.0, 1.0], 'GSM1389622': [0.0, 33.0, 0.0], 'GSM1389623': [0.0, nan, 1.0], 'GSM1389624': [0.0, nan, 0.0], 'GSM1389625': [0.0, 22.0, 1.0], 'GSM1389626': [0.0, 52.0, 1.0], 'GSM1389627': [0.0, 25.0, 1.0], 'GSM1389628': [0.0, 31.0, 0.0], 'GSM1389629': [0.0, 60.0, 1.0], 'GSM1389630': [0.0, nan, 1.0], 'GSM1389631': [0.0, 40.0, 1.0], 'GSM1389632': [0.0, 50.0, 1.0], 'GSM1389633': [0.0, 51.0, 1.0], 'GSM1389634': [0.0, 39.0, 1.0], 'GSM1389635': [0.0, 6.0, 1.0], 'GSM1389636': [0.0, 51.0, 1.0], 'GSM1389637': [0.0, 56.0, 0.0], 'GSM1389638': [1.0, 16.0, 1.0], 'GSM1389639': [1.0, 41.0, 1.0], 'GSM1389640': [1.0, 31.0, 0.0], 'GSM1389641': [1.0, 35.0, 1.0], 'GSM1389642': [1.0, 4.0, 1.0], 'GSM1389643': [1.0, 10.0, 0.0], 'GSM1389644': [1.0, 12.0, 0.0], 'GSM1389645': [1.0, 7.0, 1.0], 'GSM1389646': [1.0, 6.0, 1.0], 'GSM1389647': [1.0, 1.4, 1.0], 'GSM1389648': [1.0, 10.0, 0.0], 'GSM1389649': [1.0, 6.0, 1.0], 'GSM1389650': [1.0, 38.0, 1.0], 'GSM1389651': [1.0, 14.7, 1.0], 'GSM1389652': [1.0, 11.0, 0.0], 'GSM1389653': [1.0, 7.0, 0.0], 'GSM1389654': [1.0, 12.8, 1.0], 'GSM1389655': [1.0, 11.9, 0.0], 'GSM1389656': [1.0, 7.7, 0.0], 'GSM1389657': [1.0, 3.3, 1.0], 'GSM1389658': [1.0, 1.5, 1.0], 'GSM1389659': [1.0, 16.0, 1.0], 'GSM1389660': [1.0, 40.0, 0.0], 'GSM1389661': [1.0, 39.0, 0.0], 'GSM1389662': [1.0, 12.0, 1.0], 'GSM1389663': [1.0, 5.9, 1.0], 'GSM1389664': [1.0, 4.1, 0.0], 'GSM1389665': [1.0, 5.2, 1.0], 'GSM1389666': [1.0, 9.0, 1.0], 'GSM1389667': [1.0, 37.0, 1.0], 'GSM1389668': [1.0, 14.8, 1.0], 'GSM1389669': [1.0, 15.0, 1.0], 'GSM1389670': [1.0, 5.7, 1.0], 'GSM1389671': [1.0, 23.0, 1.0], 'GSM1389672': [1.0, 6.8, 1.0], 'GSM1389673': [1.0, 53.0, 1.0], 'GSM1389674': [1.0, 8.8, 1.0], 'GSM1389675': [1.0, 6.8, 1.0], 'GSM1389676': [1.0, 26.0, 0.0], 'GSM1389677': [1.0, 21.0, 1.0], 'GSM1389678': [1.0, 13.0, 1.0], 'GSM1389679': [1.0, 12.0, 0.0], 'GSM1389680': [1.0, 21.0, 0.0], 'GSM1389681': [1.0, 10.0, 1.0], 'GSM1389682': [1.0, 15.0, 0.0], 'GSM1389683': [1.0, 11.0, 1.0], 'GSM1389684': [1.0, 5.5, 1.0], 'GSM1389685': [1.0, 3.7, 1.0], 'GSM1389686': [1.0, 4.0, 1.0], 'GSM1389687': [1.0, 7.0, 0.0], 'GSM1389688': [1.0, 5.0, 1.0], 'GSM1389689': [1.0, 5.0, 0.0], 'GSM1389690': [1.0, 42.0, 0.0], 'GSM1389691': [1.0, 42.0, 0.0], 'GSM1389692': [1.0, 5.0, 1.0], 'GSM1389693': [1.0, 8.0, 0.0], 'GSM1389694': [1.0, 15.0, 0.0], 'GSM1389695': [1.0, 3.4, 0.0], 'GSM1389696': [1.0, 44.0, 0.0], 'GSM1389697': [1.0, 16.0, 0.0], 'GSM1389698': [1.0, 52.0, 0.0], 'GSM1389699': [1.0, 28.0, 0.0], 'GSM1389700': [1.0, 0.6, 1.0], 'GSM1389701': [1.0, 14.0, 0.0], 'GSM1389702': [1.0, 1.8, 0.0], 'GSM1389703': [1.0, 40.0, 1.0], 'GSM1389704': [1.0, 9.0, 1.0], 'GSM1389705': [1.0, 5.2, 0.0], 'GSM1389706': [1.0, 5.5, 1.0], 'GSM1389707': [1.0, 28.0, 0.0], 'GSM1389708': [1.0, 42.0, 1.0], 'GSM1389709': [1.0, 12.8, 0.0], 'GSM1389710': [1.0, 36.0, 0.0], 'GSM1389711': [1.0, 3.0, 0.0], 'GSM1389712': [1.0, 41.0, 0.0], 'GSM1389713': [1.0, 6.0, 1.0], 'GSM1389714': [1.0, 76.0, 1.0], 'GSM1389715': [1.0, 47.0, 1.0], 'GSM1389716': [1.0, 44.0, 0.0], 'GSM1389717': [1.0, 3.0, 0.0], 'GSM1389718': [1.0, 34.0, 0.0], 'GSM1389719': [1.0, 11.0, 1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Autism_spectrum_disorder_(ASD)/clinical_data/GSE57802.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "is_gene_available = True  # Transcriptome profiling implies gene expression data is available\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# Note from background info that the dataset is about 16p11.2 CNV carriers with some having ASD\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# For trait (ASD), we don't have a direct row, but we can use the genotype information\n",
    "trait_row = 4  # 'genotype: Control', 'genotype: 600kbdel', 'genotype: 600kbdup'\n",
    "age_row = 2  # 'age: X' values\n",
    "gender_row = 1  # 'gender: M', 'gender: F'\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert genotype information to binary trait values.\n",
    "    Based on the background information, 16p11.2 deletions and duplications are associated with ASD.\n",
    "    - genotype: Control (0) - control subjects\n",
    "    - genotype: 600kbdel (1) - deletion carriers, associated with ASD\n",
    "    - genotype: 600kbdup (1) - duplication carriers, associated with ASD\n",
    "    \"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    genotype = value.split(':', 1)[1].strip().lower()\n",
    "    if 'control' in genotype:\n",
    "        return 0  # Control\n",
    "    elif '600kbdel' in genotype or '600kbdup' in genotype:\n",
    "        return 1  # CNV carriers (associated with ASD)\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to continuous numeric values.\"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    age_str = value.split(':', 1)[1].strip()\n",
    "    if age_str.lower() == 'na':\n",
    "        return None\n",
    "    try:\n",
    "        return float(age_str)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"\n",
    "    Convert gender values to binary:\n",
    "    - F (female) = 0\n",
    "    - M (male) = 1\n",
    "    \"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    gender = value.split(':', 1)[1].strip().upper()\n",
    "    if gender == 'F':\n",
    "        return 0\n",
    "    elif gender == 'M':\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features\n",
    "    clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical data\n",
    "    preview = preview_df(clinical_df)\n",
    "    print(\"Clinical Data Preview:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save clinical data to file\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "02d2326a",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "670d9d77",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:52:54.959579Z",
     "iopub.status.busy": "2025-03-25T06:52:54.959479Z",
     "iopub.status.idle": "2025-03-25T06:52:55.309069Z",
     "shell.execute_reply": "2025-03-25T06:52:55.308721Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['1007_PM_s_at', '1053_PM_at', '117_PM_at', '121_PM_at', '1255_PM_g_at',\n",
      "       '1294_PM_at', '1316_PM_at', '1320_PM_at', '1405_PM_i_at', '1431_PM_at',\n",
      "       '1438_PM_at', '1487_PM_at', '1494_PM_f_at', '1552256_PM_a_at',\n",
      "       '1552257_PM_a_at', '1552258_PM_at', '1552261_PM_at', '1552263_PM_at',\n",
      "       '1552264_PM_a_at', '1552266_PM_at'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aa4aa5c4",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "866cd7bc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:52:55.310367Z",
     "iopub.status.busy": "2025-03-25T06:52:55.310246Z",
     "iopub.status.idle": "2025-03-25T06:52:55.312154Z",
     "shell.execute_reply": "2025-03-25T06:52:55.311861Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examining the gene identifiers in the expression data\n",
    "# These appear to be Affymetrix probe IDs (with the \"PM\" format and \"_at\" suffixes)\n",
    "# rather than standard human gene symbols like BRCA1, TP53, etc.\n",
    "# Affymetrix probe IDs need to be mapped to gene symbols for biological interpretation\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9652da19",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "f3791951",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:52:55.313237Z",
     "iopub.status.busy": "2025-03-25T06:52:55.313136Z",
     "iopub.status.idle": "2025-03-25T06:53:01.689636Z",
     "shell.execute_reply": "2025-03-25T06:53:01.689262Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1007_PM_s_at', '1053_PM_at', '117_PM_at', '121_PM_at', '1255_PM_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001954 /// NM_013993 /// NM_013994', 'NM_002914 /// NM_181471', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein amino acid phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0031100 // organ regeneration // inferred from electronic annotation /// 0043583 // ear development // inferred from electronic annotation /// 0043588 // skin development // inferred from electronic annotation /// 0051789 // response to protein stimulus // inferred from electronic annotation /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation', '0006260 // DNA replication // not recorded /// 0006260 // DNA replication // inferred from electronic annotation /// 0006297 // nucleotide-excision repair, DNA gap filling // not recorded /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation', '0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement', '0001656 // metanephros development // inferred from electronic annotation /// 0006350 // transcription // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from electronic annotation /// 0045449 // regulation of transcription // inferred from electronic annotation /// 0045893 // positive regulation of transcription, DNA-dependent // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-dependent // inferred from direct assay /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from electronic annotation', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007601 // visual perception // traceable author statement /// 0007602 // phototransduction // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from electronic annotation /// 0005887 // integral to plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral to membrane // inferred from electronic annotation /// 0016323 // basolateral plasma membrane // inferred from electronic annotation', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // not recorded /// 0005663 // DNA replication factor C complex // inferred from direct assay /// 0005663 // DNA replication factor C complex // inferred from electronic annotation', nan, '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005654 // nucleoplasm // inferred from electronic annotation', '0016020 // membrane // inferred from electronic annotation'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0004872 // receptor activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005515 // protein binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0003689 // DNA clamp loader activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0005524 // ATP binding // traceable author statement /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation', '0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from electronic annotation /// 0003700 // transcription factor activity // traceable author statement /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from sequence or structural similarity /// 0005515 // protein binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0016563 // transcription activator activity // inferred from sequence or structural similarity /// 0016563 // transcription activator activity // inferred from direct assay /// 0016563 // transcription activator activity // inferred from electronic annotation /// 0043565 // sequence-specific DNA binding // inferred from electronic annotation', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // traceable author statement /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "88ae873c",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "e8d889dc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:01.690943Z",
     "iopub.status.busy": "2025-03-25T06:53:01.690821Z",
     "iopub.status.idle": "2025-03-25T06:53:02.079957Z",
     "shell.execute_reply": "2025-03-25T06:53:02.079638Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First 20 gene symbols after mapping:\n",
      "Index(['A1BG', 'A1CF', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A4GALT', 'A4GNT',\n",
      "       'AAA1', 'AAAS', 'AACS', 'AACSL', 'AADAC', 'AADACL2', 'AADAT', 'AAGAB',\n",
      "       'AAK1', 'AAMP', 'AANAT', 'AARS'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify which columns in the annotation data contain probe IDs and gene symbols\n",
    "# From the preview, 'ID' contains probe IDs like '1007_PM_s_at' matching the expression data IDs\n",
    "# 'Gene Symbol' contains standard gene symbols like 'DDR1'\n",
    "\n",
    "# 2. Get the gene mapping dataframe\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene-level data\n",
    "gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)\n",
    "\n",
    "# Print the first few gene symbols after mapping to verify\n",
    "print(\"First 20 gene symbols after mapping:\")\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "95773b7b",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "5085ee68",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:02.081256Z",
     "iopub.status.busy": "2025-03-25T06:53:02.081139Z",
     "iopub.status.idle": "2025-03-25T06:53:09.557093Z",
     "shell.execute_reply": "2025-03-25T06:53:09.556747Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical features:\n",
      "{'GSM1389621': [0.0, 46.0, 1.0], 'GSM1389622': [0.0, 33.0, 0.0], 'GSM1389623': [0.0, nan, 1.0], 'GSM1389624': [0.0, nan, 0.0], 'GSM1389625': [0.0, 22.0, 1.0], 'GSM1389626': [0.0, 52.0, 1.0], 'GSM1389627': [0.0, 25.0, 1.0], 'GSM1389628': [0.0, 31.0, 0.0], 'GSM1389629': [0.0, 60.0, 1.0], 'GSM1389630': [0.0, nan, 1.0], 'GSM1389631': [0.0, 40.0, 1.0], 'GSM1389632': [0.0, 50.0, 1.0], 'GSM1389633': [0.0, 51.0, 1.0], 'GSM1389634': [0.0, 39.0, 1.0], 'GSM1389635': [0.0, 6.0, 1.0], 'GSM1389636': [0.0, 51.0, 1.0], 'GSM1389637': [0.0, 56.0, 0.0], 'GSM1389638': [1.0, 16.0, 1.0], 'GSM1389639': [1.0, 41.0, 1.0], 'GSM1389640': [1.0, 31.0, 0.0], 'GSM1389641': [1.0, 35.0, 1.0], 'GSM1389642': [1.0, 4.0, 1.0], 'GSM1389643': [1.0, 10.0, 0.0], 'GSM1389644': [1.0, 12.0, 0.0], 'GSM1389645': [1.0, 7.0, 1.0], 'GSM1389646': [1.0, 6.0, 1.0], 'GSM1389647': [1.0, 1.4, 1.0], 'GSM1389648': [1.0, 10.0, 0.0], 'GSM1389649': [1.0, 6.0, 1.0], 'GSM1389650': [1.0, 38.0, 1.0], 'GSM1389651': [1.0, 14.7, 1.0], 'GSM1389652': [1.0, 11.0, 0.0], 'GSM1389653': [1.0, 7.0, 0.0], 'GSM1389654': [1.0, 12.8, 1.0], 'GSM1389655': [1.0, 11.9, 0.0], 'GSM1389656': [1.0, 7.7, 0.0], 'GSM1389657': [1.0, 3.3, 1.0], 'GSM1389658': [1.0, 1.5, 1.0], 'GSM1389659': [1.0, 16.0, 1.0], 'GSM1389660': [1.0, 40.0, 0.0], 'GSM1389661': [1.0, 39.0, 0.0], 'GSM1389662': [1.0, 12.0, 1.0], 'GSM1389663': [1.0, 5.9, 1.0], 'GSM1389664': [1.0, 4.1, 0.0], 'GSM1389665': [1.0, 5.2, 1.0], 'GSM1389666': [1.0, 9.0, 1.0], 'GSM1389667': [1.0, 37.0, 1.0], 'GSM1389668': [1.0, 14.8, 1.0], 'GSM1389669': [1.0, 15.0, 1.0], 'GSM1389670': [1.0, 5.7, 1.0], 'GSM1389671': [1.0, 23.0, 1.0], 'GSM1389672': [1.0, 6.8, 1.0], 'GSM1389673': [1.0, 53.0, 1.0], 'GSM1389674': [1.0, 8.8, 1.0], 'GSM1389675': [1.0, 6.8, 1.0], 'GSM1389676': [1.0, 26.0, 0.0], 'GSM1389677': [1.0, 21.0, 1.0], 'GSM1389678': [1.0, 13.0, 1.0], 'GSM1389679': [1.0, 12.0, 0.0], 'GSM1389680': [1.0, 21.0, 0.0], 'GSM1389681': [1.0, 10.0, 1.0], 'GSM1389682': [1.0, 15.0, 0.0], 'GSM1389683': [1.0, 11.0, 1.0], 'GSM1389684': [1.0, 5.5, 1.0], 'GSM1389685': [1.0, 3.7, 1.0], 'GSM1389686': [1.0, 4.0, 1.0], 'GSM1389687': [1.0, 7.0, 0.0], 'GSM1389688': [1.0, 5.0, 1.0], 'GSM1389689': [1.0, 5.0, 0.0], 'GSM1389690': [1.0, 42.0, 0.0], 'GSM1389691': [1.0, 42.0, 0.0], 'GSM1389692': [1.0, 5.0, 1.0], 'GSM1389693': [1.0, 8.0, 0.0], 'GSM1389694': [1.0, 15.0, 0.0], 'GSM1389695': [1.0, 3.4, 0.0], 'GSM1389696': [1.0, 44.0, 0.0], 'GSM1389697': [1.0, 16.0, 0.0], 'GSM1389698': [1.0, 52.0, 0.0], 'GSM1389699': [1.0, 28.0, 0.0], 'GSM1389700': [1.0, 0.6, 1.0], 'GSM1389701': [1.0, 14.0, 0.0], 'GSM1389702': [1.0, 1.8, 0.0], 'GSM1389703': [1.0, 40.0, 1.0], 'GSM1389704': [1.0, 9.0, 1.0], 'GSM1389705': [1.0, 5.2, 0.0], 'GSM1389706': [1.0, 5.5, 1.0], 'GSM1389707': [1.0, 28.0, 0.0], 'GSM1389708': [1.0, 42.0, 1.0], 'GSM1389709': [1.0, 12.8, 0.0], 'GSM1389710': [1.0, 36.0, 0.0], 'GSM1389711': [1.0, 3.0, 0.0], 'GSM1389712': [1.0, 41.0, 0.0], 'GSM1389713': [1.0, 6.0, 1.0], 'GSM1389714': [1.0, 76.0, 1.0], 'GSM1389715': [1.0, 47.0, 1.0], 'GSM1389716': [1.0, 44.0, 0.0], 'GSM1389717': [1.0, 3.0, 0.0], 'GSM1389718': [1.0, 34.0, 0.0], 'GSM1389719': [1.0, 11.0, 1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Autism_spectrum_disorder_(ASD)/clinical_data/GSE57802.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE57802.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For the feature 'Autism_spectrum_disorder_(ASD)', the least common label is '0.0' with 17 occurrences. This represents 17.17% of the dataset.\n",
      "Quartiles for 'Age':\n",
      "  25%: 6.4\n",
      "  50% (Median): 14.7\n",
      "  75%: 36.5\n",
      "Min: 0.6\n",
      "Max: 76.0\n",
      "For the feature 'Gender', the least common label is '0.0' with 41 occurrences. This represents 41.41% of the dataset.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Autism_spectrum_disorder_(ASD)/GSE57802.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. We need to first create the selected_clinical_df using clinical_data from Step 1\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Preview the extracted clinical features\n",
    "preview = preview_df(selected_clinical_df)\n",
    "print(\"Preview of selected clinical features:\")\n",
    "print(preview)\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "# Create directory if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "\n",
    "# 4. Determine whether the trait and demographic features are severely biased\n",
    "trait_type = 'binary' if len(linked_data[trait].unique()) <= 2 else 'continuous'\n",
    "if trait_type == 'binary':\n",
    "    is_trait_biased = judge_binary_variable_biased(linked_data, trait)\n",
    "else:\n",
    "    is_trait_biased = judge_continuous_variable_biased(linked_data, trait)\n",
    "\n",
    "# Remove biased demographic features\n",
    "unbiased_linked_data = linked_data.copy()\n",
    "if 'Age' in unbiased_linked_data.columns:\n",
    "    age_biased = judge_continuous_variable_biased(unbiased_linked_data, 'Age')\n",
    "    if age_biased:\n",
    "        unbiased_linked_data = unbiased_linked_data.drop(columns=['Age'])\n",
    "        \n",
    "if 'Gender' in unbiased_linked_data.columns:\n",
    "    gender_biased = judge_binary_variable_biased(unbiased_linked_data, 'Gender')\n",
    "    if gender_biased:\n",
    "        unbiased_linked_data = unbiased_linked_data.drop(columns=['Gender'])\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data, \n",
    "    note=\"Dataset contains gene expression data from iPSC-derived neurons of ASD patients and unaffected siblings.\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"The dataset was determined to be not usable for analysis.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}