File size: 19,084 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "77c27aad",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:26.937307Z",
     "iopub.status.busy": "2025-03-25T06:53:26.937200Z",
     "iopub.status.idle": "2025-03-25T06:53:27.093363Z",
     "shell.execute_reply": "2025-03-25T06:53:27.093022Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Autism_spectrum_disorder_(ASD)\"\n",
    "cohort = \"GSE87847\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Autism_spectrum_disorder_(ASD)\"\n",
    "in_cohort_dir = \"../../input/GEO/Autism_spectrum_disorder_(ASD)/GSE87847\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/GSE87847.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE87847.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/clinical_data/GSE87847.csv\"\n",
    "json_path = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e4542924",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "00bb3d64",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:27.094720Z",
     "iopub.status.busy": "2025-03-25T06:53:27.094586Z",
     "iopub.status.idle": "2025-03-25T06:53:27.206225Z",
     "shell.execute_reply": "2025-03-25T06:53:27.205931Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"A Putative Blood-Based Biomarker for Autism Spectrum Disorder-Associated Ileocolitis\"\n",
      "!Series_summary\t\"Analysis of gene expression in inflamed gastrointestinal tissue and blood from GI-symptomatic children with ASD compared to non-inflamed tissue and blood from typically developing GI-syptomatic children. The hypothesis being tested was that peripheral blood would yield a surrogate biomarker for GI inflammation in children with ASD.\"\n",
      "!Series_overall_design\t\"Total RNA was isolated from inflamed gastrointestinal tissue (terminal ileum and/or colon) and peripheral blood from children with ASD and corresponding (non-iflamed) tissue and blood from typically developing children.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['sample type: Autism Spectrum Disorder', 'sample type: typically developing'], 1: ['disease state: inflamed', 'disease state: non-inflamed'], 2: ['Sex: male', 'Sex: female']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c4f7cd57",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "249f80d5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:27.207230Z",
     "iopub.status.busy": "2025-03-25T06:53:27.207128Z",
     "iopub.status.idle": "2025-03-25T06:53:27.212453Z",
     "shell.execute_reply": "2025-03-25T06:53:27.212178Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Error in clinical feature extraction: [Errno 2] No such file or directory: '../../input/GEO/Autism_spectrum_disorder_(ASD)/GSE87847/clinical_data.csv'\n",
      "Clinical data might not be available yet from previous steps.\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Determine if gene expression data is available\n",
    "# From the background information, we can see this dataset contains gene expression data from tissues and blood\n",
    "is_gene_available = True  # Gene expression data is available\n",
    "\n",
    "# 2. Define variables for trait, age, and gender availability\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# From the sample characteristics dictionary:\n",
    "# Key 0 contains info about ASD vs typically developing (trait)\n",
    "# Key 1 contains info about inflammation state (not our target trait)\n",
    "# Key 2 contains gender information\n",
    "# No age information is available\n",
    "\n",
    "trait_row = 0  # ASD status is in row 0\n",
    "age_row = None  # Age information is not available\n",
    "gender_row = 2  # Gender information is in row 2\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert ASD trait values to binary (1 for ASD, 0 for typically developing)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after the colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if 'autism' in value.lower() or 'asd' in value.lower():\n",
    "        return 1\n",
    "    elif 'typically developing' in value.lower():\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to continuous numbers\"\"\"\n",
    "    # We don't have age data in this dataset\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender values to binary (0 for female, 1 for male)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after the colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if 'male' in value.lower():\n",
    "        return 1\n",
    "    elif 'female' in value.lower():\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save metadata - Initial filtering\n",
    "# trait_row is not None, so trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (if trait data is available)\n",
    "if trait_row is not None:\n",
    "    # Load the clinical data\n",
    "    # Assuming clinical_data was obtained in a previous step and is available\n",
    "    try:\n",
    "        # This is a placeholder - the actual clinical_data should come from a previous step\n",
    "        clinical_data = pd.read_csv(os.path.join(in_cohort_dir, \"clinical_data.csv\"))\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the extracted clinical features\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Save the clinical data\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error in clinical feature extraction: {e}\")\n",
    "        print(\"Clinical data might not be available yet from previous steps.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0f085a2c",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "cbde29b8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:27.213311Z",
     "iopub.status.busy": "2025-03-25T06:53:27.213212Z",
     "iopub.status.idle": "2025-03-25T06:53:27.413447Z",
     "shell.execute_reply": "2025-03-25T06:53:27.413152Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['7A5', 'A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1',\n",
      "       'A3GALT2', 'A4GALT', 'A4GNT', 'AAA1', 'AAAS', 'AACS', 'AADAC',\n",
      "       'AADACL1', 'AADACL2', 'AADACL4', 'AADAT', 'AAGAB'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7e1f98bc",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "94b155ca",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:27.414657Z",
     "iopub.status.busy": "2025-03-25T06:53:27.414541Z",
     "iopub.status.idle": "2025-03-25T06:53:27.416397Z",
     "shell.execute_reply": "2025-03-25T06:53:27.416137Z"
    }
   },
   "outputs": [],
   "source": [
    "# I need to review the gene identifiers from the gene expression data\n",
    "\n",
    "# These appear to be human gene symbols, not probe IDs or other identifiers that would require mapping.\n",
    "# The list includes well-known gene symbols like A1BG, A2M, AAAS, AADAC, etc.\n",
    "# These are standard HGNC gene symbols and don't require mapping to other identifiers.\n",
    "\n",
    "requires_gene_mapping = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5ff7e960",
   "metadata": {},
   "source": [
    "### Step 5: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "9c245ea3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:53:27.417486Z",
     "iopub.status.busy": "2025-03-25T06:53:27.417382Z",
     "iopub.status.idle": "2025-03-25T06:53:40.080124Z",
     "shell.execute_reply": "2025-03-25T06:53:40.079269Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical features:\n",
      "{'GSM2341810': [1.0, 1.0], 'GSM2341811': [1.0, 1.0], 'GSM2341812': [1.0, 1.0], 'GSM2341813': [1.0, 1.0], 'GSM2341814': [1.0, 1.0], 'GSM2341815': [1.0, 1.0], 'GSM2341816': [1.0, 1.0], 'GSM2341817': [1.0, 1.0], 'GSM2341818': [1.0, 1.0], 'GSM2341819': [1.0, 1.0], 'GSM2341820': [1.0, 1.0], 'GSM2341821': [1.0, 1.0], 'GSM2341822': [1.0, 1.0], 'GSM2341823': [1.0, 1.0], 'GSM2341824': [1.0, 1.0], 'GSM2341825': [1.0, 1.0], 'GSM2341826': [1.0, 1.0], 'GSM2341827': [1.0, 1.0], 'GSM2341828': [1.0, 1.0], 'GSM2341829': [1.0, 1.0], 'GSM2341830': [1.0, 1.0], 'GSM2341831': [1.0, 1.0], 'GSM2341832': [1.0, 1.0], 'GSM2341833': [1.0, 1.0], 'GSM2341834': [1.0, 1.0], 'GSM2341835': [1.0, 1.0], 'GSM2341836': [1.0, 1.0], 'GSM2341837': [1.0, 1.0], 'GSM2341838': [1.0, 1.0], 'GSM2341839': [1.0, 1.0], 'GSM2341840': [1.0, 1.0], 'GSM2341841': [1.0, 1.0], 'GSM2341842': [1.0, 1.0], 'GSM2341843': [1.0, 1.0], 'GSM2341844': [1.0, 1.0], 'GSM2341845': [1.0, 1.0], 'GSM2341846': [1.0, 1.0], 'GSM2341847': [1.0, 1.0], 'GSM2341848': [1.0, 1.0], 'GSM2341849': [1.0, 1.0], 'GSM2341850': [1.0, 1.0], 'GSM2341851': [1.0, 1.0], 'GSM2341852': [1.0, 1.0], 'GSM2341853': [1.0, 1.0], 'GSM2341854': [1.0, 1.0], 'GSM2341855': [0.0, 1.0], 'GSM2341856': [0.0, 1.0], 'GSM2341857': [0.0, 1.0], 'GSM2341858': [0.0, 1.0], 'GSM2341859': [0.0, 1.0], 'GSM2341860': [0.0, 1.0], 'GSM2341861': [0.0, 1.0], 'GSM2341862': [0.0, 1.0], 'GSM2341863': [0.0, 1.0], 'GSM2341864': [0.0, 1.0], 'GSM2341865': [0.0, 1.0], 'GSM2341866': [0.0, 1.0], 'GSM2341867': [0.0, 1.0], 'GSM2341868': [0.0, 1.0], 'GSM2341869': [0.0, 1.0], 'GSM2341870': [0.0, 1.0], 'GSM2341871': [0.0, 1.0], 'GSM2341872': [0.0, 1.0], 'GSM2341873': [0.0, 1.0], 'GSM2341874': [0.0, 1.0], 'GSM2341875': [0.0, 1.0], 'GSM2341876': [0.0, 1.0], 'GSM2341877': [0.0, 1.0], 'GSM2341878': [0.0, 1.0], 'GSM2341879': [0.0, 1.0], 'GSM2341880': [0.0, 1.0], 'GSM2341881': [0.0, 1.0], 'GSM2341882': [0.0, 1.0], 'GSM2341883': [0.0, 1.0], 'GSM2341884': [0.0, 1.0], 'GSM2341885': [0.0, 1.0], 'GSM2341886': [0.0, 1.0], 'GSM2341887': [0.0, 1.0], 'GSM2341888': [0.0, 1.0], 'GSM2341889': [0.0, 1.0], 'GSM2341890': [0.0, 1.0], 'GSM2341891': [0.0, 1.0], 'GSM2341892': [0.0, 1.0], 'GSM2341893': [0.0, 1.0], 'GSM2341894': [0.0, 1.0], 'GSM2341895': [0.0, 1.0], 'GSM2341896': [0.0, 1.0], 'GSM2341897': [0.0, 1.0], 'GSM2341898': [0.0, 1.0], 'GSM2341899': [0.0, 1.0], 'GSM2341900': [0.0, 1.0], 'GSM2341901': [0.0, 1.0], 'GSM2341902': [0.0, 1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Autism_spectrum_disorder_(ASD)/clinical_data/GSE87847.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE87847.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For the feature 'Autism_spectrum_disorder_(ASD)', the least common label is '1.0' with 45 occurrences. This represents 48.39% of the dataset.\n",
      "The distribution of the feature 'Autism_spectrum_disorder_(ASD)' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '1.0' with 93 occurrences. This represents 100.00% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is severely biased.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Autism_spectrum_disorder_(ASD)/GSE87847.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. We need to first create the selected_clinical_df using clinical_data from Step 1\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Preview the extracted clinical features\n",
    "preview = preview_df(selected_clinical_df)\n",
    "print(\"Preview of selected clinical features:\")\n",
    "print(preview)\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "# Create directory if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "\n",
    "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data, \n",
    "    note=\"Dataset contains gene expression data from both blood and GI tissue of ASD and typically developing children.\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"The dataset was determined to be not usable for analysis.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}