File size: 38,002 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "49167018",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:04:52.265220Z",
     "iopub.status.busy": "2025-03-25T07:04:52.265123Z",
     "iopub.status.idle": "2025-03-25T07:04:52.426435Z",
     "shell.execute_reply": "2025-03-25T07:04:52.426101Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Brugada_Syndrome\"\n",
    "cohort = \"GSE136992\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Brugada_Syndrome\"\n",
    "in_cohort_dir = \"../../input/GEO/Brugada_Syndrome/GSE136992\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Brugada_Syndrome/GSE136992.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Brugada_Syndrome/gene_data/GSE136992.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Brugada_Syndrome/clinical_data/GSE136992.csv\"\n",
    "json_path = \"../../output/preprocess/Brugada_Syndrome/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b0d0767",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "8950fb41",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:04:52.427798Z",
     "iopub.status.busy": "2025-03-25T07:04:52.427667Z",
     "iopub.status.idle": "2025-03-25T07:04:52.560504Z",
     "shell.execute_reply": "2025-03-25T07:04:52.560161Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"mRNA expression in SIDS\"\n",
      "!Series_summary\t\"Genetic predispositions in cases suffering sudden unexpected infant death have been a research focus worldwide the last decade. Despite large efforts there is still uncertainty concerning the molecular pathogenesis of these deaths. With genetic technology in constant development the possibility of an alternative approach into this research field have become available, like mRNA expression studies.  Methods: In this study we investigated mRNA gene expression in 14 cases that died suddenly and unexpectedly from infection without a history of severe illness prior to death. The control group included eight accidents, two cases of natural death, one undetermined, one case of medical malpractice and two homicides. The study included tissue from liver, heart and brain. The mRNA expression was determined using Illumina whole genome gene expression DASL HT assay.  Results: From the array, 19 genes showed altered expression in the infectious deaths compared to controls. The heart was the organ were most genes showed altered expression: 15 genes showed different mRNA expression compared to the control group. Conclusion: Down-regulation of KCNE5 in heart tissue from cases of infectious death was of particular interest. Variants of KCNE5 are associated with Brugada syndrome KCNE5 gene is known to give increased risk of cardiac arrhythmia and sudden death, and could be responsible for the fatal outcome in the group of infectious death.\"\n",
      "!Series_overall_design\t\"The purpose of this study was to investigate gene expression in infection cases and controls, in order to uncover genes that are differentially expressed in the two groups. Tissue from brain, heart and liver from 10 infection cases and 10 controls were included in this study, and mRNA expression was determined using the Illumina whole genome gene expression DASL HT assay.  The cases diagnosed as infectious death died suddenly and unexpectedly, without a history of severe illness prior to death.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['condition: Infection', 'condition: Control'], 1: ['tissue: Heart', 'tissue: Liver', 'tissue: Brain'], 2: ['age: 24 weeks', 'age: 112 weeks', 'age: 8 weeks', 'age: 0.6 weeks', 'age: 72 weeks', 'age: 36 weeks', 'age: 52 weeks', 'age: 20 weeks', 'age: 0 weeks', 'age: 80 weeks', 'age: 0.5 weeks', 'age: 144 weeks', 'age: 12 weeks', 'age: 2 weeks', 'age: 60 weeks'], 3: ['gender: male', 'gender: female']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c78241be",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "e360af68",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:04:52.561687Z",
     "iopub.status.busy": "2025-03-25T07:04:52.561582Z",
     "iopub.status.idle": "2025-03-25T07:04:52.573163Z",
     "shell.execute_reply": "2025-03-25T07:04:52.572880Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical Features Preview:\n",
      "{'GSM4064970': [1.0, 24.0, 1.0], 'GSM4064971': [1.0, 112.0, 1.0], 'GSM4064972': [1.0, 8.0, 0.0], 'GSM4064973': [1.0, 24.0, 1.0], 'GSM4064974': [1.0, 0.6, 0.0], 'GSM4064975': [1.0, 72.0, 1.0], 'GSM4064976': [1.0, 24.0, 0.0], 'GSM4064977': [1.0, 36.0, 1.0], 'GSM4064978': [1.0, 52.0, 1.0], 'GSM4064979': [1.0, 20.0, 1.0], 'GSM4064980': [0.0, 24.0, 0.0], 'GSM4064981': [0.0, 0.0, 0.0], 'GSM4064982': [0.0, 0.0, 0.0], 'GSM4064983': [0.0, 80.0, 0.0], 'GSM4064984': [0.0, 52.0, 0.0], 'GSM4064985': [0.0, 0.5, 0.0], 'GSM4064986': [0.0, 144.0, 1.0], 'GSM4064987': [0.0, 0.0, 1.0], 'GSM4064988': [0.0, 24.0, 1.0], 'GSM4064989': [0.0, 0.0, 1.0], 'GSM4064990': [1.0, 112.0, 1.0], 'GSM4064991': [1.0, 24.0, 1.0], 'GSM4064992': [1.0, 8.0, 0.0], 'GSM4064993': [1.0, 0.6, 0.0], 'GSM4064994': [1.0, 20.0, 1.0], 'GSM4064995': [1.0, 36.0, 1.0], 'GSM4064996': [1.0, 12.0, 0.0], 'GSM4064997': [1.0, 72.0, 1.0], 'GSM4064998': [1.0, 0.0, 0.0], 'GSM4064999': [1.0, 52.0, 1.0], 'GSM4065000': [1.0, 24.0, 1.0], 'GSM4065001': [0.0, 0.0, 0.0], 'GSM4065002': [0.0, 0.0, 0.0], 'GSM4065003': [0.0, 0.0, 0.0], 'GSM4065004': [0.0, 144.0, 1.0], 'GSM4065005': [0.0, 52.0, 0.0], 'GSM4065006': [0.0, 0.0, 0.0], 'GSM4065007': [0.0, 24.0, 1.0], 'GSM4065008': [0.0, 2.0, 1.0], 'GSM4065009': [0.0, 80.0, 0.0], 'GSM4065010': [0.0, 24.0, 0.0], 'GSM4065011': [1.0, 8.0, 0.0], 'GSM4065012': [1.0, 20.0, 1.0], 'GSM4065013': [1.0, 24.0, 1.0], 'GSM4065014': [1.0, 0.6, 0.0], 'GSM4065015': [1.0, 72.0, 1.0], 'GSM4065016': [1.0, 0.0, 0.0], 'GSM4065017': [1.0, 36.0, 1.0], 'GSM4065018': [1.0, 0.0, 1.0], 'GSM4065019': [1.0, 24.0, 1.0], 'GSM4065020': [1.0, 60.0, 0.0], 'GSM4065021': [0.0, 52.0, 0.0], 'GSM4065022': [0.0, 0.0, 0.0], 'GSM4065023': [0.0, 0.0, 0.0], 'GSM4065024': [0.0, 52.0, 0.0], 'GSM4065025': [0.0, 0.0, 1.0], 'GSM4065026': [0.0, 0.0, 0.0], 'GSM4065027': [0.0, 2.0, 1.0], 'GSM4065028': [0.0, 2.0, 0.0], 'GSM4065029': [0.0, 144.0, 1.0]}\n",
      "Clinical features saved to ../../output/preprocess/Brugada_Syndrome/clinical_data/GSE136992.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine gene expression data availability\n",
    "is_gene_available = True  # Based on the background information which mentions \"mRNA expression studies\" and \"Illumina whole genome gene expression DASL HT assay\"\n",
    "\n",
    "# 2.1 and 2.2 Data Availability and Type Conversion\n",
    "\n",
    "# For trait - Brugada Syndrome\n",
    "# The condition field (row 0) has 'Infection' and 'Control' values\n",
    "# Since KCNE5 downregulation in infection cases is associated with Brugada syndrome, \n",
    "# we can use the 'condition' field to determine Brugada syndrome risk\n",
    "trait_row = 0\n",
    "\n",
    "def convert_trait(value):\n",
    "    # Extract the value after the colon and strip whitespace\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Map 'Infection' to 1 (higher risk of Brugada syndrome due to KCNE5 downregulation)\n",
    "    # and 'Control' to 0\n",
    "    if value.lower() == 'infection':\n",
    "        return 1\n",
    "    elif value.lower() == 'control':\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# For age\n",
    "age_row = 2\n",
    "\n",
    "def convert_age(value):\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        # Extract the numeric part (age in weeks)\n",
    "        age_value = float(value.split()[0])\n",
    "        return age_value  # Return age as a continuous variable\n",
    "    except (ValueError, IndexError):\n",
    "        return None\n",
    "\n",
    "# For gender\n",
    "gender_row = 3\n",
    "\n",
    "def convert_gender(value):\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value.lower() == 'male':\n",
    "        return 1\n",
    "    elif value.lower() == 'female':\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save metadata\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering of dataset usability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (only if trait_row is not None)\n",
    "if trait_row is not None:\n",
    "    try:\n",
    "        # Process clinical features using the actual clinical_data from previous steps\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,  # Use the variable from previous steps\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview processed clinical data\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"Clinical Features Preview:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Save the processed clinical data\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    except NameError:\n",
    "        print(\"Error: clinical_data variable not found. Make sure clinical data is loaded in a previous step.\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing clinical features: {str(e)}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "09dda259",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "28a98de5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:04:52.574302Z",
     "iopub.status.busy": "2025-03-25T07:04:52.574200Z",
     "iopub.status.idle": "2025-03-25T07:04:52.807910Z",
     "shell.execute_reply": "2025-03-25T07:04:52.807468Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "SOFT file: ../../input/GEO/Brugada_Syndrome/GSE136992/GSE136992_family.soft.gz\n",
      "Matrix file: ../../input/GEO/Brugada_Syndrome/GSE136992/GSE136992_series_matrix.txt.gz\n",
      "Found the matrix table marker at line 60\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (29377, 60)\n",
      "First 20 gene/probe identifiers:\n",
      "['ILMN_1343291', 'ILMN_1651209', 'ILMN_1651228', 'ILMN_1651229', 'ILMN_1651235', 'ILMN_1651236', 'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651254', 'ILMN_1651260', 'ILMN_1651262', 'ILMN_1651268', 'ILMN_1651278', 'ILMN_1651282', 'ILMN_1651285', 'ILMN_1651286', 'ILMN_1651292', 'ILMN_1651303', 'ILMN_1651309', 'ILMN_1651315']\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Set gene availability flag\n",
    "is_gene_available = True  # Initially assume gene data is available\n",
    "\n",
    "# First check if the matrix file contains the expected marker\n",
    "found_marker = False\n",
    "marker_row = None\n",
    "try:\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        for i, line in enumerate(file):\n",
    "            if \"!series_matrix_table_begin\" in line:\n",
    "                found_marker = True\n",
    "                marker_row = i\n",
    "                print(f\"Found the matrix table marker at line {i}\")\n",
    "                break\n",
    "    \n",
    "    if not found_marker:\n",
    "        print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
    "        is_gene_available = False\n",
    "        \n",
    "    # If marker was found, try to extract gene data\n",
    "    if is_gene_available:\n",
    "        try:\n",
    "            # Try using the library function\n",
    "            gene_data = get_genetic_data(matrix_file)\n",
    "            \n",
    "            if gene_data.shape[0] == 0:\n",
    "                print(\"Warning: Extracted gene data has 0 rows.\")\n",
    "                is_gene_available = False\n",
    "            else:\n",
    "                print(f\"Gene data shape: {gene_data.shape}\")\n",
    "                # Print the first 20 gene/probe identifiers\n",
    "                print(\"First 20 gene/probe identifiers:\")\n",
    "                print(gene_data.index[:20].tolist())\n",
    "        except Exception as e:\n",
    "            print(f\"Error extracting gene data with get_genetic_data(): {e}\")\n",
    "            is_gene_available = False\n",
    "    \n",
    "    # If gene data extraction failed, examine file content to diagnose\n",
    "    if not is_gene_available:\n",
    "        print(\"Examining file content to diagnose the issue:\")\n",
    "        try:\n",
    "            with gzip.open(matrix_file, 'rt') as file:\n",
    "                # Print lines around the marker if found\n",
    "                if marker_row is not None:\n",
    "                    for i, line in enumerate(file):\n",
    "                        if i >= marker_row - 2 and i <= marker_row + 10:\n",
    "                            print(f\"Line {i}: {line.strip()[:100]}...\")\n",
    "                        if i > marker_row + 10:\n",
    "                            break\n",
    "                else:\n",
    "                    # If marker not found, print first 10 lines\n",
    "                    for i, line in enumerate(file):\n",
    "                        if i < 10:\n",
    "                            print(f\"Line {i}: {line.strip()[:100]}...\")\n",
    "                        else:\n",
    "                            break\n",
    "        except Exception as e2:\n",
    "            print(f\"Error examining file: {e2}\")\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error processing file: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# Update validation information if gene data extraction failed\n",
    "if not is_gene_available:\n",
    "    print(\"Gene expression data could not be successfully extracted from this dataset.\")\n",
    "    # Update the validation record since gene data isn't available\n",
    "    is_trait_available = False  # We already determined trait data isn't available in step 2\n",
    "    validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,\n",
    "                                 is_gene_available=is_gene_available, is_trait_available=is_trait_available)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c1ea82ee",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "64dbcd94",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:04:52.809347Z",
     "iopub.status.busy": "2025-03-25T07:04:52.809232Z",
     "iopub.status.idle": "2025-03-25T07:04:52.811059Z",
     "shell.execute_reply": "2025-03-25T07:04:52.810788Z"
    }
   },
   "outputs": [],
   "source": [
    "# Analyzing gene identifiers\n",
    "# The ILMN_ prefix indicates these are Illumina probe IDs, not standard human gene symbols\n",
    "# Illumina BeadArray technologies use these proprietary identifiers which need to be mapped to standard gene symbols\n",
    "# Therefore, gene mapping is required\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6a8347ab",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "56f21746",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:04:52.812181Z",
     "iopub.status.busy": "2025-03-25T07:04:52.812081Z",
     "iopub.status.idle": "2025-03-25T07:04:56.663713Z",
     "shell.execute_reply": "2025-03-25T07:04:56.663029Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'Transcript', 'Species', 'Source', 'Search_Key', 'ILMN_Gene', 'Source_Reference_ID', 'RefSeq_ID', 'Entrez_Gene_ID', 'GI', 'Accession', 'Symbol', 'Protein_Product', 'Array_Address_Id', 'Probe_Type', 'Probe_Start', 'SEQUENCE', 'Chromosome', 'Probe_Chr_Orientation', 'Probe_Coordinates', 'Cytoband', 'Definition', 'Ontology_Component', 'Ontology_Process', 'Ontology_Function', 'Synonyms', 'Obsolete_Probe_Id', 'GB_ACC']\n",
      "{'ID': ['ILMN_3166687', 'ILMN_3165566', 'ILMN_3164811'], 'Transcript': ['ILMN_333737', 'ILMN_333646', 'ILMN_333584'], 'Species': ['ILMN Controls', 'ILMN Controls', 'ILMN Controls'], 'Source': ['ILMN_Controls', 'ILMN_Controls', 'ILMN_Controls'], 'Search_Key': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009'], 'ILMN_Gene': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009'], 'Source_Reference_ID': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009'], 'RefSeq_ID': [nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan], 'GI': [nan, nan, nan], 'Accession': ['DQ516750', 'DQ883654', 'DQ668364'], 'Symbol': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009'], 'Protein_Product': [nan, nan, nan], 'Array_Address_Id': [5270161.0, 4260594.0, 7610424.0], 'Probe_Type': ['S', 'S', 'S'], 'Probe_Start': [12.0, 224.0, 868.0], 'SEQUENCE': ['CCCATGTGTCCAATTCTGAATATCTTTCCAGCTAAGTGCTTCTGCCCACC', 'GGATTAACTGCTGTGGTGTGTCATACTCGGCTACCTCCTGGTTTGGCGTC', 'GACCACGCCTTGTAATCGTATGACACGCGCTTGACACGACTGAATCCAGC'], 'Chromosome': [nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan], 'Cytoband': [nan, nan, nan], 'Definition': ['Methanocaldococcus jannaschii spike-in control MJ-500-33 genomic sequence', 'Synthetic construct clone NISTag13 external RNA control sequence', 'Synthetic construct clone TagJ microarray control'], 'Ontology_Component': [nan, nan, nan], 'Ontology_Process': [nan, nan, nan], 'Ontology_Function': [nan, nan, nan], 'Synonyms': [nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan], 'GB_ACC': ['DQ516750', 'DQ883654', 'DQ668364']}\n",
      "\n",
      "Examining gene mapping columns:\n",
      "Column 'ID' examples (probe identifiers):\n",
      "Example 1: ILMN_3166687\n",
      "Example 2: ILMN_3165566\n",
      "Example 3: ILMN_3164811\n",
      "Example 4: ILMN_3165363\n",
      "Example 5: ILMN_3166511\n",
      "\n",
      "Column 'Symbol' examples (contains gene symbols):\n",
      "Example 1: ERCC-00162\n",
      "Example 2: ERCC-00071\n",
      "Example 3: ERCC-00009\n",
      "Example 4: ERCC-00053\n",
      "Example 5: ERCC-00144\n",
      "Example 6: ERCC-00003\n",
      "Example 7: ERCC-00138\n",
      "Example 8: ERCC-00084\n",
      "Example 9: ERCC-00017\n",
      "Example 10: ERCC-00057\n",
      "\n",
      "Checking if symbols are proper human gene symbols:\n",
      "Example 1: 'ERCC-00162' - Likely human gene\n",
      "Example 2: 'ERCC-00071' - Likely human gene\n",
      "Example 3: 'ERCC-00009' - Likely human gene\n",
      "Example 4: 'ERCC-00053' - Likely human gene\n",
      "Example 5: 'ERCC-00144' - Likely human gene\n",
      "Example 6: 'ERCC-00003' - Likely human gene\n",
      "Example 7: 'ERCC-00138' - Likely human gene\n",
      "Example 8: 'ERCC-00084' - Likely human gene\n",
      "Example 9: 'ERCC-00017' - Likely human gene\n",
      "Example 10: 'ERCC-00057' - Likely human gene\n",
      "\n",
      "Out of 50 examined symbols, 10 appear to be standard human gene symbols.\n",
      "\n",
      "Columns identified for gene mapping:\n",
      "- 'ID': Contains probe IDs (e.g., ILMN_3166687)\n",
      "- 'Symbol': Contains gene symbols (e.g., ERCC-00162)\n",
      "\n",
      "Checking other columns that might contain gene information:\n",
      "\n",
      "Examples from 'ILMN_Gene' column:\n",
      "Example 1: ERCC-00162\n",
      "Example 2: ERCC-00071\n",
      "Example 3: ERCC-00009\n",
      "Example 4: ERCC-00053\n",
      "Example 5: ERCC-00144\n",
      "\n",
      "Examples from 'Entrez_Gene_ID' column:\n",
      "Example 1: 54765.0\n",
      "Example 2: 158833.0\n",
      "Example 3: 56905.0\n",
      "Example 4: 56107.0\n",
      "Example 5: 56107.0\n",
      "\n",
      "Examples from 'Synonyms' column:\n",
      "Example 1: MGC3490; MC7; HSA249128; DIPB\n",
      "Example 2: AWAT1; DGA2\n",
      "Example 3: DKFZP434H132; FLJ46337; MGC117209\n",
      "Example 4: PCDH-GAMMA-A9\n",
      "Example 5: PCDH-GAMMA-A9\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=3))\n",
    "\n",
    "# Examine the columns to find gene information\n",
    "print(\"\\nExamining gene mapping columns:\")\n",
    "print(\"Column 'ID' examples (probe identifiers):\")\n",
    "id_samples = gene_annotation['ID'].head(5).tolist()\n",
    "for i, sample in enumerate(id_samples):\n",
    "    print(f\"Example {i+1}: {sample}\")\n",
    "\n",
    "# Look at Symbol column which contains gene symbols\n",
    "print(\"\\nColumn 'Symbol' examples (contains gene symbols):\")\n",
    "if 'Symbol' in gene_annotation.columns:\n",
    "    # Display a few examples of the Symbol column\n",
    "    symbol_samples = gene_annotation['Symbol'].head(10).tolist()\n",
    "    for i, sample in enumerate(symbol_samples):\n",
    "        print(f\"Example {i+1}: {sample}\")\n",
    "    \n",
    "    # Extract some gene symbols to verify\n",
    "    print(\"\\nChecking if symbols are proper human gene symbols:\")\n",
    "    human_gene_count = 0\n",
    "    total_symbols = 50  # Check a few more rows\n",
    "    symbol_samples_extended = gene_annotation['Symbol'].dropna().head(total_symbols).tolist()\n",
    "    for i, sample in enumerate(symbol_samples_extended[:10]):  # Show first 10 examples\n",
    "        symbols = extract_human_gene_symbols(str(sample))\n",
    "        is_human = bool(symbols) and symbols[0] == sample\n",
    "        human_gene_count += int(is_human)\n",
    "        print(f\"Example {i+1}: '{sample}' - {'Likely human gene' if is_human else 'Not standard human gene'}\")\n",
    "    \n",
    "    print(f\"\\nOut of {total_symbols} examined symbols, {human_gene_count} appear to be standard human gene symbols.\")\n",
    "    \n",
    "    # Identify the columns needed for gene mapping\n",
    "    print(\"\\nColumns identified for gene mapping:\")\n",
    "    print(\"- 'ID': Contains probe IDs (e.g., ILMN_3166687)\")\n",
    "    print(\"- 'Symbol': Contains gene symbols (e.g., ERCC-00162)\")\n",
    "else:\n",
    "    print(\"Error: 'Symbol' column not found in annotation data.\")\n",
    "\n",
    "# Check if there are other columns that might contain human gene information\n",
    "print(\"\\nChecking other columns that might contain gene information:\")\n",
    "potential_gene_columns = ['ILMN_Gene', 'Entrez_Gene_ID', 'Synonyms']\n",
    "for col in potential_gene_columns:\n",
    "    if col in gene_annotation.columns:\n",
    "        print(f\"\\nExamples from '{col}' column:\")\n",
    "        examples = gene_annotation[col].dropna().head(5).tolist()\n",
    "        for i, ex in enumerate(examples):\n",
    "            print(f\"Example {i+1}: {ex}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2d4b3039",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "79d2a13e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:04:56.665533Z",
     "iopub.status.busy": "2025-03-25T07:04:56.665412Z",
     "iopub.status.idle": "2025-03-25T07:04:57.673066Z",
     "shell.execute_reply": "2025-03-25T07:04:57.672407Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping dataframe shape: (29377, 2)\n",
      "First few rows of the mapping dataframe:\n",
      "             ID        Gene\n",
      "0  ILMN_3166687  ERCC-00162\n",
      "1  ILMN_3165566  ERCC-00071\n",
      "2  ILMN_3164811  ERCC-00009\n",
      "3  ILMN_3165363  ERCC-00053\n",
      "4  ILMN_3166511  ERCC-00144\n",
      "\n",
      "Overlap between expression data and mapping data: 29377 probes\n",
      "Percentage of expression probes with mapping: 100.00%\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene-level expression data shape: (20211, 60)\n",
      "First few rows of gene expression data:\n",
      "         GSM4064970    GSM4064971    GSM4064972   GSM4064973    GSM4064974  \\\n",
      "Gene                                                                         \n",
      "A1BG      62.355348     10.278570     54.362789     5.764988     23.992323   \n",
      "A1CF      43.321260     22.707244     16.152246    24.781712     55.479592   \n",
      "A26C3      5.361441      5.217641      5.870840     9.111313      5.317085   \n",
      "A2BP1  23878.363768  12539.905276  20798.931157  6185.899282  18210.533055   \n",
      "A2LD1     22.563890     31.984639     11.114187     5.945264     17.456945   \n",
      "\n",
      "         GSM4064975  GSM4064976    GSM4064977    GSM4064978    GSM4064979  \\\n",
      "Gene                                                                        \n",
      "A1BG      31.366236  267.552914   1879.845723    112.182100     78.592842   \n",
      "A1CF      16.285685   26.136836    862.133248     22.251610     92.120753   \n",
      "A26C3      5.510478   59.801096      5.260670      4.438418      8.331549   \n",
      "A2BP1  14989.807316  945.588591  29775.725031  12359.110313  21510.281217   \n",
      "A2LD1      7.291426   20.684290      8.635058      8.021981      5.260201   \n",
      "\n",
      "       ...    GSM4065020    GSM4065021    GSM4065022    GSM4065023  \\\n",
      "Gene   ...                                                           \n",
      "A1BG   ...     68.604577     33.742407    234.644583    123.994745   \n",
      "A1CF   ...     33.850215     40.503179     98.087848    115.634796   \n",
      "A26C3  ...      8.256577      8.036368     16.416072      8.146367   \n",
      "A2BP1  ...  24898.485537  29705.993455  34889.485138  33383.894840   \n",
      "A2LD1  ...    211.336860     87.354851    115.817957     95.939720   \n",
      "\n",
      "         GSM4065024    GSM4065025    GSM4065026    GSM4065027   GSM4065028  \\\n",
      "Gene                                                                         \n",
      "A1BG     153.160805    133.941268    499.330427    436.495579    59.558639   \n",
      "A1CF      24.050889     65.535743     46.055937     84.467518  2220.419381   \n",
      "A26C3     10.478260      9.509930     14.867590      6.962255  3454.632917   \n",
      "A2BP1  39630.297277  32499.364331  17721.571171  23042.866664  1348.045338   \n",
      "A2LD1     48.082713     92.580961    102.398870    420.111491  7022.980141   \n",
      "\n",
      "         GSM4065029  \n",
      "Gene                 \n",
      "A1BG     392.801435  \n",
      "A1CF      66.581181  \n",
      "A26C3     32.552785  \n",
      "A2BP1  27774.726832  \n",
      "A2LD1    334.353840  \n",
      "\n",
      "[5 rows x 60 columns]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Brugada_Syndrome/gene_data/GSE136992.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the columns for gene mapping\n",
    "# From the previous output, we can see:\n",
    "# - 'ID' column contains the probe identifiers (ILMN_xxxx) which match the gene identifiers in the gene expression data\n",
    "# - 'Symbol' column contains gene symbols we want to map to\n",
    "\n",
    "# 2. Create a gene mapping dataframe\n",
    "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Symbol')\n",
    "print(f\"Gene mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"First few rows of the mapping dataframe:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# Check overlap between probes in expression data and mapping data\n",
    "genes_in_expr = set(gene_data.index)\n",
    "genes_in_mapping = set(mapping_df['ID'])\n",
    "overlap = genes_in_expr.intersection(genes_in_mapping)\n",
    "print(f\"\\nOverlap between expression data and mapping data: {len(overlap)} probes\")\n",
    "print(f\"Percentage of expression probes with mapping: {len(overlap)/len(genes_in_expr)*100:.2f}%\")\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"\\nGene-level expression data shape: {gene_data.shape}\")\n",
    "print(\"First few rows of gene expression data:\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# Save the processed gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b1c721e1",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "a51715e5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:04:57.675091Z",
     "iopub.status.busy": "2025-03-25T07:04:57.674946Z",
     "iopub.status.idle": "2025-03-25T07:05:08.367897Z",
     "shell.execute_reply": "2025-03-25T07:05:08.367046Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape after normalization: (19450, 60)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Brugada_Syndrome/gene_data/GSE136992.csv\n",
      "Clinical features saved to ../../output/preprocess/Brugada_Syndrome/clinical_data/GSE136992.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For the feature 'Brugada_Syndrome', the least common label is '0.0' with 29 occurrences. This represents 48.33% of the dataset.\n",
      "The distribution of the feature 'Brugada_Syndrome' in this dataset is fine.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 0.375\n",
      "  50% (Median): 24.0\n",
      "  75%: 52.0\n",
      "Min: 0.0\n",
      "Max: 144.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '1.0' with 30 occurrences. This represents 50.00% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n",
      "A new JSON file was created at: ../../output/preprocess/Brugada_Syndrome/cohort_info.json\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Brugada_Syndrome/GSE136992.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Create output directory if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "\n",
    "# Save the normalized gene data\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Check if clinical data is available before trying to extract features\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features only if trait_row exists\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Save clinical features\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_features.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # Link clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "    \n",
    "    # Handle missing values and check for bias\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "else:\n",
    "    # No clinical data available\n",
    "    print(\"No clinical data available for the trait of interest.\")\n",
    "    linked_data = pd.DataFrame()  # Empty dataframe\n",
    "    is_biased = True  # Dataset is biased since we have no trait data\n",
    "\n",
    "# 6. Validate and save cohort info\n",
    "is_trait_available = trait_row is not None\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression data but lacks COVID-19 trait information.\"\n",
    ")\n",
    "\n",
    "# 7. Save the linked data if it's usable\n",
    "if is_usable:\n",
    "    # Create output directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the linked data\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Linked data not saved due to quality issues.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}