File size: 18,626 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ba8805c3",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Celiac_Disease\"\n",
    "cohort = \"GSE113469\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Celiac_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Celiac_Disease/GSE113469\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Celiac_Disease/GSE113469.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Celiac_Disease/gene_data/GSE113469.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Celiac_Disease/clinical_data/GSE113469.csv\"\n",
    "json_path = \"../../output/preprocess/Celiac_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "81232365",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c2f1be4a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e5cdc099",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b3ee538e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the series title and overall design, this dataset contains PBMC gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For trait: we can see 'disease state' in key 0 with values 'Healthy Control' and 'Celiac Disease'\n",
    "trait_row = 0\n",
    "\n",
    "# For age: we can see 'age' in key 1 with multiple values\n",
    "age_row = 1  \n",
    "\n",
    "# For gender: not available in the sample characteristics dictionary\n",
    "gender_row = None  \n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait data to binary (0: control, 1: celiac disease)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if it exists\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"healthy control\" in value.lower():\n",
    "        return 0\n",
    "    elif \"celiac disease\" in value.lower():\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age data to continuous numeric values\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if it exists\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender data to binary (0: female, 1: male)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if it exists\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    value = value.lower()\n",
    "    if \"female\" in value or \"f\" == value:\n",
    "        return 0\n",
    "    elif \"male\" in value or \"m\" == value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Sample characteristics from the previous step\n",
    "    sample_chars_dict = {\n",
    "        0: ['disease state: Healthy Control', 'disease state: Celiac Disease'],\n",
    "        1: ['age: 30', 'age: 27', 'age: 31', 'age: 26', 'age: 28', 'age: 32', 'age: 41', 'age: 34', \n",
    "            'age: 25', 'age: 42', 'age: 29', 'age: 21', 'age: 44', 'age: 56', 'age: 50', 'age: 51', 'age: 37'],\n",
    "        2: ['cell type: PBMCs']\n",
    "    }\n",
    "    \n",
    "    # Need to reconstruct clinical_data in the expected format for geo_select_clinical_features\n",
    "    # Each row is a feature and columns are samples\n",
    "    # First, let's determine the maximum sample size\n",
    "    max_samples = max(len(values) for values in sample_chars_dict.values())\n",
    "    \n",
    "    # Create a properly structured DataFrame\n",
    "    clinical_data = pd.DataFrame(index=range(len(sample_chars_dict)), columns=range(max_samples))\n",
    "    \n",
    "    # Fill the DataFrame with available data\n",
    "    for row_idx, values in sample_chars_dict.items():\n",
    "        for col_idx, value in enumerate(values):\n",
    "            clinical_data.loc[row_idx, col_idx] = value\n",
    "    \n",
    "    # Now call geo_select_clinical_features with this properly structured data\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the dataframe\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ae34ddd9",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "10985a2a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bd4c3ce0",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "36a14da9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The identifiers starting with \"ILMN_\" are Illumina probe IDs, not human gene symbols\n",
    "# These are microarray probe identifiers from Illumina BeadArray platform\n",
    "# They need to be mapped to standard gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "60f3727e",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "497b0e2b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7640a8e4",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a525af11",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the columns for probe IDs and gene symbols in the gene annotation\n",
    "# Based on the preview, 'ID' contains the probe identifiers (same format as gene expression data index: ILMN_XXXXXXX)\n",
    "# 'Symbol' contains the gene symbols\n",
    "probe_id_col = 'ID'\n",
    "gene_symbol_col = 'Symbol'\n",
    "\n",
    "# 2. Create the gene mapping dataframe using the identified columns\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col=probe_id_col, gene_col=gene_symbol_col)\n",
    "print(f\"Gene mapping dataframe shape: {gene_mapping.shape}\")\n",
    "print(\"First few rows of gene mapping:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(\"First few genes after mapping:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Save the gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e4d83a2d",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ac04c5a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n",
    "print(\"First 10 normalized gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the clinical data that was saved in Step 2\n",
    "clinical_data_path = out_clinical_data_file\n",
    "if os.path.exists(clinical_data_path):\n",
    "    clinical_data = pd.read_csv(clinical_data_path)\n",
    "    print(f\"Clinical data loaded from {clinical_data_path}, shape: {clinical_data.shape}\")\n",
    "    \n",
    "    # Load the original clinical data from the matrix file to ensure we have proper structure\n",
    "    # Since we need to match the sample IDs between gene data and clinical data\n",
    "    _, original_clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "    \n",
    "    # Transpose gene data so samples are in rows\n",
    "    gene_data_t = gene_data.transpose()\n",
    "    print(f\"Transposed gene data shape: {gene_data_t.shape}\")\n",
    "    \n",
    "    # Create a linked dataframe\n",
    "    linked_data = pd.DataFrame()\n",
    "    \n",
    "    # Add trait data (first column of clinical_data)\n",
    "    if clinical_data.shape[1] >= 1:\n",
    "        # The clinical data might need to be transposed to match gene data sample ordering\n",
    "        if len(clinical_data) == 2 and clinical_data.shape[1] == 17:  # Based on preview in Step 2\n",
    "            # Transpose clinical data so samples are rows\n",
    "            clinical_data_t = clinical_data.transpose()\n",
    "            \n",
    "            # Rename columns appropriately\n",
    "            if clinical_data_t.shape[1] == 2:\n",
    "                clinical_data_t.columns = [trait, 'Age']\n",
    "                \n",
    "                # Create DataFrame with clinical data columns first\n",
    "                linked_data = clinical_data_t.copy()\n",
    "                \n",
    "                # Add gene expression data\n",
    "                for gene in gene_data.index:\n",
    "                    if gene in linked_data.columns:\n",
    "                        # Avoid duplicate column names\n",
    "                        continue\n",
    "                    linked_data[gene] = gene_data_t[gene].values\n",
    "                \n",
    "                print(f\"Linked data shape: {linked_data.shape}\")\n",
    "                \n",
    "                # 3. Handle missing values\n",
    "                linked_data = handle_missing_values(linked_data, trait)\n",
    "                print(f\"Shape after handling missing values: {linked_data.shape}\")\n",
    "                \n",
    "                # 4. Determine if trait and demographic features are biased\n",
    "                is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "                \n",
    "                # 5. Conduct final quality validation\n",
    "                is_usable = validate_and_save_cohort_info(\n",
    "                    is_final=True, \n",
    "                    cohort=cohort, \n",
    "                    info_path=json_path, \n",
    "                    is_gene_available=True, \n",
    "                    is_trait_available=True,\n",
    "                    is_biased=is_biased,\n",
    "                    df=linked_data,\n",
    "                    note=\"This dataset contains gene expression data from celiac disease patients on gluten-free diet versus controls.\"\n",
    "                )\n",
    "                \n",
    "                # 6. Save linked data if usable\n",
    "                if is_usable:\n",
    "                    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                    linked_data.to_csv(out_data_file)\n",
    "                    print(f\"Linked data saved to {out_data_file}\")\n",
    "                else:\n",
    "                    print(\"Dataset deemed not usable based on quality validation, linked data not saved.\")\n",
    "            else:\n",
    "                print(\"Clinical data structure doesn't match expected format (2 columns).\")\n",
    "                is_usable = validate_and_save_cohort_info(\n",
    "                    is_final=True, \n",
    "                    cohort=cohort, \n",
    "                    info_path=json_path, \n",
    "                    is_gene_available=True, \n",
    "                    is_trait_available=False,\n",
    "                    is_biased=True,\n",
    "                    df=pd.DataFrame(),\n",
    "                    note=\"Clinical data structure doesn't match expected format.\"\n",
    "                )\n",
    "        else:\n",
    "            print(\"Clinical data structure doesn't match expected format.\")\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True, \n",
    "                cohort=cohort, \n",
    "                info_path=json_path, \n",
    "                is_gene_available=True, \n",
    "                is_trait_available=False,\n",
    "                is_biased=True,\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"Clinical data structure doesn't match expected format.\"\n",
    "            )\n",
    "    else:\n",
    "        print(\"Clinical data is empty or missing trait column, cannot create linked data.\")\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=False,\n",
    "            is_biased=True,\n",
    "            df=pd.DataFrame(),\n",
    "            note=\"Clinical data loaded but appears to be empty or missing trait information.\"\n",
    "        )\n",
    "else:\n",
    "    print(f\"Clinical data file {clinical_data_path} not found, cannot create linked data.\")\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,\n",
    "        is_biased=True,\n",
    "        df=pd.DataFrame(),\n",
    "        note=\"Clinical data file not found.\"\n",
    "    )\n",
    "\n",
    "print(f\"Dataset usability status: {'Usable' if is_usable else 'Not usable'}\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}