File size: 41,545 Bytes
f88156f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "88681485",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:15:12.327094Z",
"iopub.status.busy": "2025-03-25T08:15:12.326842Z",
"iopub.status.idle": "2025-03-25T08:15:12.496884Z",
"shell.execute_reply": "2025-03-25T08:15:12.496428Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Chronic_Fatigue_Syndrome\"\n",
"cohort = \"GSE67311\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Chronic_Fatigue_Syndrome\"\n",
"in_cohort_dir = \"../../input/GEO/Chronic_Fatigue_Syndrome/GSE67311\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Chronic_Fatigue_Syndrome/GSE67311.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Chronic_Fatigue_Syndrome/gene_data/GSE67311.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Chronic_Fatigue_Syndrome/clinical_data/GSE67311.csv\"\n",
"json_path = \"../../output/preprocess/Chronic_Fatigue_Syndrome/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "f5255a4a",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ace81830",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:15:12.498336Z",
"iopub.status.busy": "2025-03-25T08:15:12.498005Z",
"iopub.status.idle": "2025-03-25T08:15:12.709014Z",
"shell.execute_reply": "2025-03-25T08:15:12.708533Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Peripheral Blood Gene Expression in Fibromyalgia Patients Reveals Potential Biological Markers and Physiological Pathways\"\n",
"!Series_summary\t\"Fibromyalgia (FM) is a common pain disorder characterized by dysregulation in the processing of pain. Although FM has similarities with other rheumatologic pain disorders, the search for objective markers has not been successful. In the current study we analyzed gene expression in the whole blood of 70 fibromyalgia patients and 70 healthy matched controls. Global molecular profiling revealed an upregulation of several inflammatory molecules in FM patients and downregulation of specific pathways related to hypersensitivity and allergy. There was a differential expression of genes in known pathways for pain processing, such as glutamine/glutamate signaling and axonal development. We also identified a panel of candidate gene expression-based classifiers that could establish an objective blood-based molecular diagnostic to objectively identify FM patients and guide design and testing of new therapies. Ten classifier probesets (CPA3, C11orf83, LOC100131943, RGS17, PARD3B, ANKRD20A9P, TTLL7, C8orf12, KAT2B and RIOK3) provided a diagnostic sensitivity of 95% and a specificity of 96%. Molecular scores developed from these classifiers were able to clearly distinguish FM patients from healthy controls. An understanding of molecular dysregulation in fibromyalgia is in its infancy; however the results described herein indicate blood global gene expression profiling provides many testable hypotheses that deserve further exploration.\"\n",
"!Series_overall_design\t\"Blood samples were collected in PAXgene tubes and collected samples were stored at -80oC. The RNA was isolated using the PAXgene RNA isolation kit according to standard protocols. Total RNA was quantified on a Nanodrop spectrophotometer and visualized for quality on an Agilent Bioanalyzer. Samples with an average RIN (RNA Integrity Number) >8, indicating good quality RNA, were processed. 200ng of total RNA was amplified and then hybridized to Affymetrix® Human Gene 1.1 ST Peg arrays using standard manufacturer’s protocols on a Gene Titan MC instrument. Data was analyzed using Partek Genomics Suite (version 6.6) using RMA normalization. All genes with Log2 signal intensity less than 4.8 were excluded from analysis based on low expression. Differential expression analysis was carried out using a one way ANOVA by using Method of Moments and Fisher's Least Significant Difference (LSD) tests with a threshold p-value <0.005 for the biological and molecular function analyses, and a more conservative threshold p-value <0.001 (FDR q-value range 0.002% to 13%) for candidate diagnostic signatures.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['diagnosis: healthy control', 'diagnosis: fibromyalgia'], 1: ['tissue: peripheral blood'], 2: ['fiqr score: 8.5', 'fiqr score: -2.0', 'fiqr score: 9.8', 'fiqr score: 0.5', 'fiqr score: -1.0', 'fiqr score: -0.5', 'fiqr score: 2.2', 'fiqr score: 15.3', 'fiqr score: 4.0', 'fiqr score: 29.3', 'fiqr score: 27.2', 'fiqr score: 5.0', 'fiqr score: 1.0', 'fiqr score: 2.5', 'fiqr score: 3.0', 'fiqr score: -1.5', 'fiqr score: 1.3', 'fiqr score: 21.7', 'fiqr score: -1.2', 'fiqr score: 4.3', 'fiqr score: 6.5', 'fiqr score: 2.0', 'fiqr score: 11.7', 'fiqr score: 15.0', 'fiqr score: 6.0', 'fiqr score: 14.2', 'fiqr score: -0.2', 'fiqr score: 12.8', 'fiqr score: 15.7', 'fiqr score: 0.0'], 3: ['bmi: 36', 'bmi: 34', 'bmi: 33', 'bmi: 22', 'bmi: 24', 'bmi: 28', 'bmi: 23', 'bmi: 48', 'bmi: 25', 'bmi: 46', 'bmi: 32', 'bmi: 31', 'bmi: 21', 'bmi: 27', 'bmi: 39', 'bmi: 52', 'bmi: 37', 'bmi: 0', 'bmi: 38', 'bmi: 26', 'bmi: 42', 'bmi: 20', 'bmi: 30', 'bmi: 43', 'bmi: 35', 'bmi: 44', 'bmi: 29', 'bmi: 45', 'bmi: 40', 'bmi: 47'], 4: ['migraine: No', 'migraine: Yes', 'migraine: -'], 5: ['irritable bowel syndrome: No', 'irritable bowel syndrome: Yes', 'irritable bowel syndrome: -'], 6: ['major depression: No', 'major depression: -', 'major depression: Yes'], 7: ['bipolar disorder: No', 'bipolar disorder: -', 'bipolar disorder: Yes'], 8: ['chronic fatigue syndrome: No', nan, 'chronic fatigue syndrome: -', 'chronic fatigue syndrome: Yes']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "5f31aa39",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8ec2bc9c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:15:12.710427Z",
"iopub.status.busy": "2025-03-25T08:15:12.710312Z",
"iopub.status.idle": "2025-03-25T08:15:12.715054Z",
"shell.execute_reply": "2025-03-25T08:15:12.714638Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample characteristics file not found at ../../input/GEO/Chronic_Fatigue_Syndrome/GSE67311/sample_characteristics.csv\n",
"Cannot extract clinical features without sample data.\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# This is likely gene expression data as it mentions \"Blood global gene expression profiling\" and\n",
"# \"Affymetrix® Human Gene 1.1 ST Peg arrays\" in the background information\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"\n",
"# 2.1 For trait: Chronic Fatigue Syndrome\n",
"# From the sample characteristics dictionary, we can see row 8 contains information about CFS\n",
"trait_row = 8\n",
"\n",
"# 2.2 Trait conversion function\n",
"def convert_trait(value):\n",
" if pd.isna(value):\n",
" return None\n",
" if isinstance(value, str):\n",
" value = value.lower()\n",
" if \"yes\" in value:\n",
" return 1\n",
" elif \"no\" in value:\n",
" return 0\n",
" else:\n",
" return None\n",
" return None\n",
"\n",
"# Age is not available in the dataset\n",
"age_row = None\n",
"def convert_age(value):\n",
" return None\n",
"\n",
"# Gender is not available in the dataset\n",
"gender_row = None\n",
"def convert_gender(value):\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Look for the sample characteristics file in the cohort directory\n",
" sample_char_file = os.path.join(in_cohort_dir, \"sample_characteristics.csv\")\n",
" \n",
" if os.path.exists(sample_char_file):\n",
" clinical_data = pd.read_csv(sample_char_file)\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data, \n",
" trait=trait, \n",
" trait_row=trait_row, \n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the dataframe\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview_df(selected_clinical_df))\n",
" \n",
" # Save to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" else:\n",
" print(f\"Sample characteristics file not found at {sample_char_file}\")\n",
" print(\"Cannot extract clinical features without sample data.\")\n"
]
},
{
"cell_type": "markdown",
"id": "c454aad6",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f8c87309",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:15:12.716429Z",
"iopub.status.busy": "2025-03-25T08:15:12.716320Z",
"iopub.status.idle": "2025-03-25T08:15:13.075545Z",
"shell.execute_reply": "2025-03-25T08:15:13.074988Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found data marker at line 66\n",
"Header line: \"ID_REF\"\t\"GSM1644447\"\t\"GSM1644448\"\t\"GSM1644449\"\t\"GSM1644450\"\t\"GSM1644451\"\t\"GSM1644452\"\t\"GSM1644453\"\t\"GSM1644454\"\t\"GSM1644455\"\t\"GSM1644456\"\t\"GSM1644457\"\t\"GSM1644458\"\t\"GSM1644459\"\t\"GSM1644460\"\t\"GSM1644461\"\t\"GSM1644462\"\t\"GSM1644463\"\t\"GSM1644464\"\t\"GSM1644465\"\t\"GSM1644466\"\t\"GSM1644467\"\t\"GSM1644468\"\t\"GSM1644469\"\t\"GSM1644470\"\t\"GSM1644471\"\t\"GSM1644472\"\t\"GSM1644473\"\t\"GSM1644474\"\t\"GSM1644475\"\t\"GSM1644476\"\t\"GSM1644477\"\t\"GSM1644478\"\t\"GSM1644479\"\t\"GSM1644480\"\t\"GSM1644481\"\t\"GSM1644482\"\t\"GSM1644483\"\t\"GSM1644484\"\t\"GSM1644485\"\t\"GSM1644486\"\t\"GSM1644487\"\t\"GSM1644488\"\t\"GSM1644489\"\t\"GSM1644490\"\t\"GSM1644491\"\t\"GSM1644492\"\t\"GSM1644493\"\t\"GSM1644494\"\t\"GSM1644495\"\t\"GSM1644496\"\t\"GSM1644497\"\t\"GSM1644498\"\t\"GSM1644499\"\t\"GSM1644500\"\t\"GSM1644501\"\t\"GSM1644502\"\t\"GSM1644503\"\t\"GSM1644504\"\t\"GSM1644505\"\t\"GSM1644506\"\t\"GSM1644507\"\t\"GSM1644508\"\t\"GSM1644509\"\t\"GSM1644510\"\t\"GSM1644511\"\t\"GSM1644512\"\t\"GSM1644513\"\t\"GSM1644514\"\t\"GSM1644515\"\t\"GSM1644516\"\t\"GSM1644517\"\t\"GSM1644518\"\t\"GSM1644519\"\t\"GSM1644520\"\t\"GSM1644521\"\t\"GSM1644522\"\t\"GSM1644523\"\t\"GSM1644524\"\t\"GSM1644525\"\t\"GSM1644526\"\t\"GSM1644527\"\t\"GSM1644528\"\t\"GSM1644529\"\t\"GSM1644530\"\t\"GSM1644531\"\t\"GSM1644532\"\t\"GSM1644533\"\t\"GSM1644534\"\t\"GSM1644535\"\t\"GSM1644536\"\t\"GSM1644537\"\t\"GSM1644538\"\t\"GSM1644539\"\t\"GSM1644540\"\t\"GSM1644541\"\t\"GSM1644542\"\t\"GSM1644543\"\t\"GSM1644544\"\t\"GSM1644545\"\t\"GSM1644546\"\t\"GSM1644547\"\t\"GSM1644548\"\t\"GSM1644549\"\t\"GSM1644550\"\t\"GSM1644551\"\t\"GSM1644552\"\t\"GSM1644553\"\t\"GSM1644554\"\t\"GSM1644555\"\t\"GSM1644556\"\t\"GSM1644557\"\t\"GSM1644558\"\t\"GSM1644559\"\t\"GSM1644560\"\t\"GSM1644561\"\t\"GSM1644562\"\t\"GSM1644563\"\t\"GSM1644564\"\t\"GSM1644565\"\t\"GSM1644566\"\t\"GSM1644567\"\t\"GSM1644568\"\t\"GSM1644569\"\t\"GSM1644570\"\t\"GSM1644571\"\t\"GSM1644572\"\t\"GSM1644573\"\t\"GSM1644574\"\t\"GSM1644575\"\t\"GSM1644576\"\t\"GSM1644577\"\t\"GSM1644578\"\t\"GSM1644579\"\t\"GSM1644580\"\t\"GSM1644581\"\t\"GSM1644582\"\t\"GSM1644583\"\t\"GSM1644584\"\t\"GSM1644585\"\t\"GSM1644586\"\t\"GSM1644587\"\t\"GSM1644588\"\n",
"First data line: 7892501\t5.62341\t4.54841\t4.74053\t3.06227\t3.65178\t4.34336\t5.36535\t3.69126\t2.52748\t4.45481\t2.92058\t3.8511\t5.12552\t5.573\t4.0534\t4.01826\t3.13732\t4.08528\t2.9814\t4.50242\t3.11999\t4.39195\t3.29422\t4.65377\t4.45319\t3.90496\t5.07445\t4.45871\t3.40056\t5.43057\t3.17105\t4.24734\t3.9472\t3.26099\t4.21569\t4.80915\t3.99664\t4.83605\t3.98062\t3.68376\t4.43473\t4.48863\t5.0855\t4.75533\t3.87273\t2.65504\t3.14636\t2.8747\t2.94444\t4.67516\t5.74588\t4.40772\t4.93351\t3.68102\t4.70309\t6.77148\t3.79405\t3.50168\t4.82181\t5.26454\t5.43154\t3.56926\t4.88201\t3.77941\t4.74896\t4.85282\t3.16368\t5.73479\t4.22191\t3.30515\t3.3804\t3.91636\t5.19594\t3.73744\t3.039\t2.4157\t3.89391\t4.50269\t4.21075\t5.12803\t3.3515\t3.2859\t3.41076\t5.35577\t5.0399\t5.26434\t5.07121\t4.81385\t4.70926\t5.03955\t3.10709\t3.46736\t3.10186\t5.22351\t3.17449\t3.98248\t3.41802\t2.61387\t2.19567\t3.53848\t2.38796\t3.72276\t4.78528\t4.06687\t3.24888\t2.38341\t2.66362\t3.56916\t3.15337\t4.0438\t4.54457\t4.82199\t3.59462\t4.18813\t3.95037\t4.82841\t3.73593\t4.82214\t4.17745\t4.01625\t4.42865\t4.15125\t3.63591\t2.76813\t3.24467\t4.59799\t5.77069\t5.22108\t5.2745\t4.68387\t4.87527\t5.47274\t2.93373\t4.78499\t2.86791\t5.63311\t4.38304\t3.72055\t3.03068\t4.61205\t5.38301\t3.56539\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['7892501', '7892502', '7892503', '7892504', '7892505', '7892506',\n",
" '7892507', '7892508', '7892509', '7892510', '7892511', '7892512',\n",
" '7892513', '7892514', '7892515', '7892516', '7892517', '7892518',\n",
" '7892519', '7892520'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "85a1f188",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c12a2c9a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:15:13.077273Z",
"iopub.status.busy": "2025-03-25T08:15:13.077139Z",
"iopub.status.idle": "2025-03-25T08:15:13.079439Z",
"shell.execute_reply": "2025-03-25T08:15:13.079010Z"
}
},
"outputs": [],
"source": [
"# The identifiers in the gene expression data appear to be probe IDs (like \"7892501\"), not human gene symbols\n",
"# These are likely to be Illumina microarray probe IDs that need to be mapped to gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "e3b9b5b2",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d79cc27c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:15:13.081028Z",
"iopub.status.busy": "2025-03-25T08:15:13.080880Z",
"iopub.status.idle": "2025-03-25T08:15:19.375899Z",
"shell.execute_reply": "2025-03-25T08:15:19.375533Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['7896736', '7896738', '7896740', '7896742', '7896744'], 'GB_LIST': [nan, nan, 'NM_001005240,NM_001004195,NM_001005484,BC136848,BC136907', 'BC118988,AL137655', 'NM_001005277,NM_001005221,NM_001005224,NM_001005504,BC137547'], 'SPOT_ID': ['chr1:53049-54936', 'chr1:63015-63887', 'chr1:69091-70008', 'chr1:334129-334296', 'chr1:367659-368597'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': [53049.0, 63015.0, 69091.0, 334129.0, 367659.0], 'RANGE_STOP': [54936.0, 63887.0, 70008.0, 334296.0, 368597.0], 'total_probes': [7.0, 31.0, 24.0, 6.0, 36.0], 'gene_assignment': ['---', '---', 'NM_001005240 // OR4F17 // olfactory receptor, family 4, subfamily F, member 17 // 19p13.3 // 81099 /// NM_001004195 // OR4F4 // olfactory receptor, family 4, subfamily F, member 4 // 15q26.3 // 26682 /// NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000318050 // OR4F17 // olfactory receptor, family 4, subfamily F, member 17 // 19p13.3 // 81099 /// ENST00000335137 // OR4F4 // olfactory receptor, family 4, subfamily F, member 4 // 15q26.3 // 26682 /// ENST00000326183 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// BC136848 // OR4F17 // olfactory receptor, family 4, subfamily F, member 17 // 19p13.3 // 81099 /// BC136907 // OR4F4 // olfactory receptor, family 4, subfamily F, member 4 // 15q26.3 // 26682 /// ENST00000442916 // OR4F17 // olfactory receptor, family 4, subfamily F, member 17 // 19p13.3 // 81099', 'ENST00000388975 // SEPT14 // septin 14 // 7p11.2 // 346288 /// BC118988 // NCRNA00266 // non-protein coding RNA 266 // --- // 140849 /// AL137655 // LOC100134822 // similar to hCG1739109 // --- // 100134822', 'NM_001005277 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// NM_001005221 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759 /// NM_001005224 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683 /// NM_001005504 // OR4F21 // olfactory receptor, family 4, subfamily F, member 21 // 8p23.3 // 441308 /// ENST00000320901 // OR4F21 // olfactory receptor, family 4, subfamily F, member 21 // 8p23.3 // 441308 /// BC137547 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683 /// BC137547 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// BC137547 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759'], 'mrna_assignment': ['---', 'ENST00000328113 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:15:102467008:102467910:-1 gene:ENSG00000183909 // chr1 // 100 // 100 // 31 // 31 // 0 /// ENST00000318181 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:19:104601:105256:1 gene:ENSG00000176705 // chr1 // 100 // 100 // 31 // 31 // 0 /// ENST00000492842 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:62948:63887:1 gene:ENSG00000240361 // chr1 // 100 // 100 // 31 // 31 // 0', 'NM_001005240 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 17 (OR4F17), mRNA. // chr1 // 100 // 100 // 24 // 24 // 0 /// NM_001004195 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 4 (OR4F4), mRNA. // chr1 // 100 // 100 // 24 // 24 // 0 /// NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 24 // 24 // 0 /// ENST00000318050 // ENSEMBL // Olfactory receptor 4F17 gene:ENSG00000176695 // chr1 // 100 // 100 // 24 // 24 // 0 /// ENST00000335137 // ENSEMBL // Olfactory receptor 4F4 gene:ENSG00000186092 // chr1 // 100 // 100 // 24 // 24 // 0 /// ENST00000326183 // ENSEMBL // Olfactory receptor 4F5 gene:ENSG00000177693 // chr1 // 100 // 100 // 24 // 24 // 0 /// BC136848 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 17, mRNA (cDNA clone MGC:168462 IMAGE:9020839), complete cds. // chr1 // 100 // 100 // 24 // 24 // 0 /// BC136907 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 4, mRNA (cDNA clone MGC:168521 IMAGE:9020898), complete cds. // chr1 // 100 // 100 // 24 // 24 // 0 /// ENST00000442916 // ENSEMBL // OR4F4 (Fragment) gene:ENSG00000176695 // chr1 // 100 // 88 // 21 // 21 // 0', 'ENST00000388975 // ENSEMBL // Septin-14 gene:ENSG00000154997 // chr1 // 50 // 100 // 3 // 6 // 0 /// BC118988 // GenBank // Homo sapiens chromosome 20 open reading frame 69, mRNA (cDNA clone MGC:141807 IMAGE:40035995), complete cds. // chr1 // 100 // 100 // 6 // 6 // 0 /// AL137655 // GenBank // Homo sapiens mRNA; cDNA DKFZp434B2016 (from clone DKFZp434B2016). // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000428915 // ENSEMBL // cdna:known chromosome:GRCh37:10:38742109:38755311:1 gene:ENSG00000203496 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000455207 // ENSEMBL // cdna:known chromosome:GRCh37:1:334129:446155:1 gene:ENSG00000224813 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000455464 // ENSEMBL // cdna:known chromosome:GRCh37:1:334140:342806:1 gene:ENSG00000224813 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000440200 // ENSEMBL // cdna:known chromosome:GRCh37:1:536816:655580:-1 gene:ENSG00000230021 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000279067 // ENSEMBL // cdna:known chromosome:GRCh37:20:62921738:62934912:1 gene:ENSG00000149656 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000499986 // ENSEMBL // cdna:known chromosome:GRCh37:5:180717576:180761371:1 gene:ENSG00000248628 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000436899 // ENSEMBL // cdna:known chromosome:GRCh37:6:131910:144885:-1 gene:ENSG00000170590 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000432557 // ENSEMBL // cdna:known chromosome:GRCh37:8:132324:150572:-1 gene:ENSG00000250210 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000523795 // ENSEMBL // cdna:known chromosome:GRCh37:8:141690:150563:-1 gene:ENSG00000250210 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000490482 // ENSEMBL // cdna:known chromosome:GRCh37:8:149942:163324:-1 gene:ENSG00000223508 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000307499 // ENSEMBL // cdna:known supercontig::GL000227.1:57780:70752:-1 gene:ENSG00000229450 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000441245 // ENSEMBL // cdna:known chromosome:GRCh37:1:637316:655530:-1 gene:ENSG00000230021 // chr1 // 100 // 67 // 4 // 4 // 0 /// ENST00000425473 // ENSEMBL // cdna:known chromosome:GRCh37:20:62926294:62944485:1 gene:ENSG00000149656 // chr1 // 100 // 67 // 4 // 4 // 0 /// ENST00000471248 // ENSEMBL // cdna:known chromosome:GRCh37:1:110953:129173:-1 gene:ENSG00000238009 // chr1 // 75 // 67 // 3 // 4 // 0', 'NM_001005277 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 16 (OR4F16), mRNA. // chr1 // 100 // 100 // 36 // 36 // 0 /// NM_001005221 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 29 (OR4F29), mRNA. // chr1 // 100 // 100 // 36 // 36 // 0 /// NM_001005224 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 3 (OR4F3), mRNA. // chr1 // 100 // 100 // 36 // 36 // 0 /// NM_001005504 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 21 (OR4F21), mRNA. // chr1 // 89 // 100 // 32 // 36 // 0 /// ENST00000320901 // ENSEMBL // Olfactory receptor 4F21 gene:ENSG00000176269 // chr1 // 89 // 100 // 32 // 36 // 0 /// BC137547 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 3, mRNA (cDNA clone MGC:169170 IMAGE:9021547), complete cds. // chr1 // 100 // 100 // 36 // 36 // 0 /// ENST00000426406 // ENSEMBL // cdna:known chromosome:GRCh37:1:367640:368634:1 gene:ENSG00000235249 // chr1 // 100 // 100 // 36 // 36 // 0 /// ENST00000332831 // ENSEMBL // cdna:known chromosome:GRCh37:1:621096:622034:-1 gene:ENSG00000185097 // chr1 // 100 // 100 // 36 // 36 // 0 /// ENST00000456475 // ENSEMBL // cdna:known chromosome:GRCh37:5:180794269:180795263:1 gene:ENSG00000230178 // chr1 // 100 // 100 // 36 // 36 // 0 /// ENST00000521196 // ENSEMBL // cdna:known chromosome:GRCh37:11:86612:87605:-1 gene:ENSG00000224777 // chr1 // 78 // 100 // 28 // 36 // 0'], 'category': ['---', 'main', 'main', 'main', 'main']}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "75abfd6c",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "47d9ec2c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:15:19.377329Z",
"iopub.status.busy": "2025-03-25T08:15:19.377211Z",
"iopub.status.idle": "2025-03-25T08:17:28.832767Z",
"shell.execute_reply": "2025-03-25T08:17:28.832134Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data shape: (33297, 142)\n",
"First few probe IDs: ['7892501', '7892502', '7892503', '7892504', '7892505']\n",
"Creating gene mapping from probe IDs to gene symbols...\n",
"\n",
"Probe ID overlap: 33297 out of 33297 expression probes\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Filtered mapping dataframe contains 4761471 rows\n",
"\n",
"Extracting gene symbols from gene assignments...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Sample of extracted gene symbols (first 5 rows):\n",
" ID Gene\n",
"0 7896736 []\n",
"1 7896738 []\n",
"2 7896740 [OR4F17, OR4F4, OR4F5, BC136848, BC136907]\n",
"3 7896742 [SEPT14, BC118988, NCRNA00266, AL137655]\n",
"4 7896744 [OR4F16, OR4F29, OR4F3, OR4F21, BC137547]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Number of probes with gene mappings: 22011 out of 4761471 total probes\n",
"\n",
"Applying gene mapping to convert probe data to gene expression data...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mapped gene expression data shape: (0, 142)\n",
"\n",
"WARNING: Still no mapped genes. Attempting direct mapping of most common genes...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Created direct mapping with 447055 probe-to-gene mappings\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Direct mapped gene expression data shape: (55006, 142)\n",
"\n",
"Normalizing gene symbols...\n",
"Final gene data shape after normalization: (19854, 142)\n",
"\n",
"Final gene expression data shape: (19854, 142)\n",
"First 10 gene symbols: ['A1BG', 'A1CF', 'A2M', 'A2ML1', 'A4GALT', 'A4GNT', 'AAA1', 'AAAS', 'AACS', 'AADAC']\n",
"\n",
"Saving gene expression data to CSV file...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Chronic_Fatigue_Syndrome/gene_data/GSE67311.csv\n"
]
}
],
"source": [
"# 1. Ensure we have the gene expression data loaded properly\n",
"gene_data = get_genetic_data(matrix_file)\n",
"print(f\"Gene expression data shape: {gene_data.shape}\")\n",
"print(f\"First few probe IDs: {list(gene_data.index[:5])}\")\n",
"\n",
"# 2. Examine the gene annotation structure and prepare the mapping\n",
"print(\"Creating gene mapping from probe IDs to gene symbols...\")\n",
"\n",
"# Check the relationship between gene expression probe IDs and annotation IDs\n",
"gene_ids = set(gene_data.index.astype(str))\n",
"annotation_ids = set(gene_annotation['ID'].astype(str))\n",
"overlap = gene_ids.intersection(annotation_ids)\n",
"print(f\"\\nProbe ID overlap: {len(overlap)} out of {len(gene_ids)} expression probes\")\n",
"\n",
"# Create a mapping dataframe, focusing on IDs that appear in our gene expression data\n",
"mapping_df = gene_annotation[gene_annotation['ID'].astype(str).isin(gene_ids)][['ID', 'gene_assignment']].copy()\n",
"print(f\"Filtered mapping dataframe contains {len(mapping_df)} rows\")\n",
"\n",
"# Extract gene symbols from gene assignments\n",
"print(\"\\nExtracting gene symbols from gene assignments...\")\n",
"mapping_df['Gene'] = mapping_df['gene_assignment'].apply(extract_human_gene_symbols)\n",
"\n",
"# Print a sample of the extracted gene symbols\n",
"print(\"\\nSample of extracted gene symbols (first 5 rows):\")\n",
"print(mapping_df[['ID', 'Gene']].head(5))\n",
"\n",
"# Count how many mapped probes have gene assignments\n",
"mappable_probes = mapping_df[mapping_df['Gene'].apply(len) > 0].shape[0]\n",
"print(f\"\\nNumber of probes with gene mappings: {mappable_probes} out of {mapping_df.shape[0]} total probes\")\n",
"\n",
"# Check if we have any valid mappings\n",
"if mappable_probes == 0:\n",
" print(\"\\nWARNING: No valid gene mappings found. Using a fallback approach...\")\n",
" # Fallback: Try exact string matching for probe IDs\n",
" mapping_df = gene_annotation[['ID', 'gene_assignment']].copy()\n",
" mapping_df['ID'] = mapping_df['ID'].astype(str)\n",
" mapping_df['Gene'] = mapping_df['gene_assignment'].apply(extract_human_gene_symbols)\n",
" # Only keep rows with extracted gene symbols\n",
" mapping_df = mapping_df[mapping_df['Gene'].apply(len) > 0]\n",
" print(f\"Fallback mapping contains {len(mapping_df)} rows with gene symbols\")\n",
"\n",
"# Apply gene mapping to get gene expression data\n",
"print(\"\\nApplying gene mapping to convert probe data to gene expression data...\")\n",
"gene_data_mapped = apply_gene_mapping(gene_data, mapping_df[['ID', 'Gene']])\n",
"print(f\"Mapped gene expression data shape: {gene_data_mapped.shape}\")\n",
"\n",
"# If we still don't have any genes, try a more direct approach\n",
"if gene_data_mapped.shape[0] == 0:\n",
" print(\"\\nWARNING: Still no mapped genes. Attempting direct mapping of most common genes...\")\n",
" # Direct mapping approach\n",
" import re\n",
" \n",
" # We'll create a simple mapping from each probe to potential genes\n",
" direct_mappings = {}\n",
" for idx, row in gene_annotation.iterrows():\n",
" probe_id = str(row['ID'])\n",
" gene_text = str(row['gene_assignment'])\n",
" # Extract gene symbols - common pattern: SYMBOL // DESCRIPTION\n",
" matches = re.findall(r'(\\w+) // ', gene_text)\n",
" if matches:\n",
" direct_mappings[probe_id] = matches\n",
" \n",
" # Create a new mapping dataframe\n",
" direct_map_records = []\n",
" for probe_id, genes in direct_mappings.items():\n",
" for gene in genes:\n",
" if gene not in ['NM', 'BC', 'ENST', 'NC'] and len(gene) > 1: # Filter out common prefixes\n",
" direct_map_records.append({'ID': probe_id, 'Gene': gene})\n",
" \n",
" if direct_map_records:\n",
" direct_mapping_df = pd.DataFrame(direct_map_records)\n",
" print(f\"Created direct mapping with {len(direct_mapping_df)} probe-to-gene mappings\")\n",
" gene_data_mapped = apply_gene_mapping(gene_data, direct_mapping_df)\n",
" print(f\"Direct mapped gene expression data shape: {gene_data_mapped.shape}\")\n",
"\n",
"# Normalize gene symbols using standard function or keep as is if still empty\n",
"if gene_data_mapped.shape[0] > 0:\n",
" print(\"\\nNormalizing gene symbols...\")\n",
" gene_data = normalize_gene_symbols_in_index(gene_data_mapped)\n",
" print(f\"Final gene data shape after normalization: {gene_data.shape}\")\n",
"else:\n",
" print(\"\\nWARNING: Could not map any genes. Creating an empty gene expression dataset.\")\n",
" gene_data = pd.DataFrame(columns=gene_data.columns)\n",
"\n",
"# Print information about the resulting gene expression data\n",
"print(f\"\\nFinal gene expression data shape: {gene_data.shape}\")\n",
"if gene_data.shape[0] > 0:\n",
" print(f\"First 10 gene symbols: {list(gene_data.index[:10])}\")\n",
"else:\n",
" print(\"WARNING: No genes were found in the final dataset!\")\n",
"\n",
"# Save the gene expression data to a CSV file\n",
"print(\"\\nSaving gene expression data to CSV file...\")\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "b5b5beec",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a66e7661",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:17:28.834447Z",
"iopub.status.busy": "2025-03-25T08:17:28.834322Z",
"iopub.status.idle": "2025-03-25T08:17:43.826393Z",
"shell.execute_reply": "2025-03-25T08:17:43.825726Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Chronic_Fatigue_Syndrome/gene_data/GSE67311.csv\n",
"Clinical data saved to ../../output/preprocess/Chronic_Fatigue_Syndrome/clinical_data/GSE67311.csv\n",
"Linked data shape: (142, 19855)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"For the feature 'Chronic_Fatigue_Syndrome', the least common label is '1.0' with 10 occurrences. This represents 7.52% of the dataset.\n",
"The distribution of the feature 'Chronic_Fatigue_Syndrome' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Chronic_Fatigue_Syndrome/GSE67311.csv\n"
]
}
],
"source": [
"# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# Create clinical features directly from clinical_data using the conversion functions defined earlier\n",
"clinical_features_df = geo_select_clinical_features(\n",
" clinical_data, \n",
" trait=trait, \n",
" trait_row=trait_row, \n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"# Save the clinical data\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_features_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Now link the clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)\n",
"print(\"Linked data shape:\", linked_data.shape)\n",
"\n",
"# Handle missing values in the linked data\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"\n",
"# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
"is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Conduct quality check and save the cohort information.\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=\"Dataset contains gene expression from monocytes of rheumatoid arthritis patients, with osteoporosis status included in comorbidity information.\"\n",
")\n",
"\n",
"# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Data was determined to be unusable and was not saved\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|