File size: 22,906 Bytes
e4183cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9949b45e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Creutzfeldt-Jakob_Disease\"\n",
    "cohort = \"GSE87629\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Creutzfeldt-Jakob_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Creutzfeldt-Jakob_Disease/GSE87629\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Creutzfeldt-Jakob_Disease/GSE87629.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Creutzfeldt-Jakob_Disease/gene_data/GSE87629.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Creutzfeldt-Jakob_Disease/clinical_data/GSE87629.csv\"\n",
    "json_path = \"../../output/preprocess/Creutzfeldt-Jakob_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "81524769",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "644a07d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "587b0c60",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ecc90421",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the Series_overall_design, this dataset contains DNA microarray analysis of B and T cells\n",
    "is_gene_available = True  # DNA microarray data is gene expression data\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait: looking at row 5 which contains 'biopsy data, villus height to crypt depth'\n",
    "# This measures the severity of the disease (villus atrophy) which can serve as our trait\n",
    "trait_row = 5\n",
    "\n",
    "# For age: There is no age information in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# For gender: There is no gender information in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert the villus height to crypt depth ratio to a continuous value.\n",
    "    Higher values indicate healthier intestinal tissue (less disease severity).\n",
    "    Lower values indicate more severe celiac disease activity.\n",
    "    \"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the numeric value after the colon\n",
    "    if ':' in value:\n",
    "        try:\n",
    "            # The value is in format \"biopsy data, villus height to crypt depth: X.X\"\n",
    "            return float(value.split(':')[1].strip())\n",
    "        except (ValueError, IndexError):\n",
    "            return None\n",
    "    else:\n",
    "        try:\n",
    "            return float(value)\n",
    "        except ValueError:\n",
    "            return None\n",
    "\n",
    "# Age and gender conversion functions are defined but won't be used\n",
    "def convert_age(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        try:\n",
    "            return float(value.split(':')[1].strip())\n",
    "        except (ValueError, IndexError):\n",
    "            return None\n",
    "    else:\n",
    "        try:\n",
    "            return float(value)\n",
    "        except ValueError:\n",
    "            return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        value = value.split(':')[1].strip().lower()\n",
    "    else:\n",
    "        value = value.lower()\n",
    "    \n",
    "    if value in ['female', 'f']:\n",
    "        return 0\n",
    "    elif value in ['male', 'm']:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial filtering information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Create a DataFrame from the Sample Characteristics Dictionary shown in the previous output\n",
    "    sample_characteristics = {\n",
    "        0: ['individual: celiac patient A', 'individual: celiac patient C', 'individual: celiac patient G', 'individual: celiac patient H', 'individual: celiac patient K', 'individual: celiac patient L', 'individual: celiac patient M', 'individual: celiac patient N', 'individual: celiac patient O', 'individual: celiac patient P', 'individual: celiac patient Q', 'individual: celiac patient R', 'individual: celiac patient S', 'individual: celiac patient T', 'individual: celiac patient U', 'individual: celiac patient V', 'individual: celiac patient W', 'individual: celiac patient X', 'individual: celiac patient Y', 'individual: celiac patient Z'],\n",
    "        1: ['disease state: biopsy confirmed celiac disease on gluten-free diet greater than one year'],\n",
    "        2: ['treatment: control', 'treatment: 6 weeks gluten challenge'],\n",
    "        3: ['tissue: peripheral whole blood'],\n",
    "        4: ['cell type: purified pool of B and T cells'],\n",
    "        5: ['biopsy data, villus height to crypt depth: 2.9', 'biopsy data, villus height to crypt depth: 2.6', 'biopsy data, villus height to crypt depth: 1.1', 'biopsy data, villus height to crypt depth: 0.5', 'biopsy data, villus height to crypt depth: 0.3', 'biopsy data, villus height to crypt depth: 2', 'biopsy data, villus height to crypt depth: 0.4', 'biopsy data, villus height to crypt depth: 2.4', 'biopsy data, villus height to crypt depth: 1.4', 'biopsy data, villus height to crypt depth: 2.7', 'biopsy data, villus height to crypt depth: 3.5', 'biopsy data, villus height to crypt depth: 0.7', 'biopsy data, villus height to crypt depth: 0.2', 'biopsy data, villus height to crypt depth: 2.8', 'biopsy data, villus height to crypt depth: 3', 'biopsy data, villus height to crypt depth: 0.8', 'biopsy data, villus height to crypt depth: 1.2', 'biopsy data, villus height to crypt depth: 1.7', 'biopsy data, villus height to crypt depth: 2.5', 'biopsy data, villus height to crypt depth: 2.1', 'biopsy data, villus height to crypt depth: 3.1'],\n",
    "        6: ['hybridization batch: 1']\n",
    "    }\n",
    "    \n",
    "    # Convert the dictionary to a DataFrame\n",
    "    clinical_data = pd.DataFrame.from_dict(sample_characteristics, orient='index')\n",
    "    \n",
    "    # Extract clinical features using the library function\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical features\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of clinical data:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2d2a3dd8",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "55d5ab0d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6101c34d",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "25a895d7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# From the identifiers shown, we can observe that the gene identifiers are in the format \"ILMN_xxxxxxx\".\n",
    "# This format indicates that they are Illumina probe IDs, not standard human gene symbols.\n",
    "# Illumina probe IDs need to be mapped to human gene symbols for proper analysis.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7f8514c0",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3cbdaf90",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2896a2b3",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0b5f9f09",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the appropriate column names for gene identifiers and gene symbols\n",
    "# From the gene_annotation preview, we see:\n",
    "# - 'ID' column contains Illumina probe IDs (e.g., ILMN_1725881) which match our gene expression data index\n",
    "# - 'Symbol' column contains the gene symbols we want to map to (e.g., LOC23117, FCGR2B, TRIM44)\n",
    "\n",
    "# 2. Get gene mapping dataframe by extracting the two columns\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
    "\n",
    "# Print the first few rows to verify the mapping\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(gene_mapping))\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "# Using the library function that distributes probe values across multiple genes and sums by gene\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Print the first few rows to verify the mapped gene expression data\n",
    "print(\"\\nGene expression data preview (after mapping):\")\n",
    "print(preview_df(gene_data))\n",
    "\n",
    "# Save the gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e9453534",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b44a07b8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the clinical data\n",
    "# First, let's read the clinical data that was saved in step 2\n",
    "clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "\n",
    "# The clinical data is loaded but it might not have the trait name as a column\n",
    "# We need to set the first column as the trait column\n",
    "clinical_df.columns = [trait]\n",
    "print(\"Clinical data preview:\")\n",
    "print(clinical_df.head())\n",
    "\n",
    "# Create a transposed version for linking with gene data (samples as columns)\n",
    "clinical_df_t = clinical_df.T\n",
    "print(\"Transposed clinical data shape:\", clinical_df_t.shape)\n",
    "\n",
    "# 3. Link the clinical and genetic data\n",
    "linked_data = pd.concat([clinical_df_t, normalized_gene_data]).T\n",
    "print(f\"Linked data shape (before handling missing values): {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Determine whether the trait and demographic features are biased\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 6. Conduct final quality validation and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains villus height to crypt depth ratio measurements in celiac disease patients, which reflects disease severity.\"\n",
    ")\n",
    "\n",
    "# 7. If the linked data is usable, save it\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c79be5e3",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5b03847f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Extract clinical features using the functions defined in step 2\n",
    "# First, let's load the clinical data again to ensure we have the latest version\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Extract clinical features using the correct trait name from the variable\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_data, \n",
    "    trait=trait, \n",
    "    trait_row=trait_row, \n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "\n",
    "# 3. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape (before handling missing values): {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Determine whether the trait and demographic features are biased\n",
    "# Check if trait is biased\n",
    "trait_type = 'binary' if len(linked_data[trait].unique()) == 2 else 'continuous'\n",
    "if trait_type == \"binary\":\n",
    "    is_trait_biased = judge_binary_variable_biased(linked_data, trait)\n",
    "else:\n",
    "    is_trait_biased = judge_continuous_variable_biased(linked_data, trait)\n",
    "\n",
    "# Remove biased demographic features if present\n",
    "unbiased_linked_data = linked_data.copy()\n",
    "if \"Age\" in unbiased_linked_data.columns:\n",
    "    age_biased = judge_continuous_variable_biased(unbiased_linked_data, 'Age')\n",
    "    if age_biased:\n",
    "        print(f\"The distribution of the feature 'Age' in this dataset is severely biased.\")\n",
    "        unbiased_linked_data = unbiased_linked_data.drop(columns='Age')\n",
    "    else:\n",
    "        print(f\"The distribution of the feature 'Age' in this dataset is fine.\")\n",
    "\n",
    "if \"Gender\" in unbiased_linked_data.columns:\n",
    "    gender_biased = judge_binary_variable_biased(unbiased_linked_data, 'Gender')\n",
    "    if gender_biased:\n",
    "        print(f\"The distribution of the feature 'Gender' in this dataset is severely biased.\")\n",
    "        unbiased_linked_data = unbiased_linked_data.drop(columns='Gender')\n",
    "    else:\n",
    "        print(f\"The distribution of the feature 'Gender' in this dataset is fine.\")\n",
    "\n",
    "# 6. Conduct final quality validation and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains villus height to crypt depth ratio measurements in celiac disease patients, which reflects disease severity when studied for Creutzfeldt-Jakob_Disease.\"\n",
    ")\n",
    "\n",
    "# 7. If the linked data is usable, save it\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}