File size: 27,613 Bytes
e4183cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "baa6ec5b",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Crohns_Disease\"\n",
"cohort = \"GSE66407\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Crohns_Disease\"\n",
"in_cohort_dir = \"../../input/GEO/Crohns_Disease/GSE66407\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Crohns_Disease/GSE66407.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Crohns_Disease/gene_data/GSE66407.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Crohns_Disease/clinical_data/GSE66407.csv\"\n",
"json_path = \"../../output/preprocess/Crohns_Disease/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "78122d19",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "badbdfd4",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "69899cd0",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f263e62",
"metadata": {},
"outputs": [],
"source": [
"# Analysis of dataset to determine gene expression data availability and clinical feature extraction\n",
"import pandas as pd\n",
"\n",
"# 1. Gene Expression Data Availability \n",
"# Based on the background information, this dataset contains gut biopsies with transcriptome analysis\n",
"# This indicates gene expression data, not just miRNA or methylation\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# Trait (Crohn's Disease) - From key 3 \"diagnosis: CD\"\n",
"trait_row = 3\n",
"\n",
"# Age - From key 2 \"age: XX\"\n",
"age_row = 2\n",
"\n",
"# Gender - Not available in the sample characteristics\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert diagnosis information to binary trait value (0: Control, 1: CD).\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" # Split by colon and get the value\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if value == 'CD':\n",
" return 1 # Has Crohn's Disease\n",
" elif value == 'Control':\n",
" return 0 # Control/Healthy\n",
" else:\n",
" return None # UC or other diagnoses\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age information to continuous value.\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" # Split by colon and get the value\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" try:\n",
" return float(value)\n",
" except:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Placeholder function for gender conversion, though gender data is not available.\"\"\"\n",
" return None\n",
"\n",
"# 3. Save Metadata - initial filtering\n",
"# trait_row is not None, so trait data is available\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=(trait_row is not None)\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction (since trait_row is not None)\n",
"# Use a safer approach to parse the sample characteristics dictionary from the previous output\n",
"sample_char_dict = {0: ['patient: 10', 'patient: 53', 'patient: 22', 'patient: 91', 'patient: 23', 'patient: 96', 'patient: 50', 'patient: 9', 'patient: 25', 'patient: 97', 'patient: 12', 'patient: 52', 'patient: 101', 'patient: 29', 'patient: 51', 'patient: 107', 'patient: 43', 'patient: 11', 'patient: 109', 'patient: 40', 'patient: 113', 'patient: 116', 'patient: 39', 'patient: 120', 'patient: 34', 'patient: 48', 'patient: 59', 'patient: 65', 'patient: 99', 'patient: 28'], \n",
" 1: ['biopsy: 2', 'biopsy: 3', 'biopsy: 6', 'biopsy: 5', 'biopsy: 1', 'biopsy: 4', 'biopsy: 7', 'biopsy: 8', 'biopsy: G1', 'biopsy: 9', 'biopsy: 1A', 'biopsy: 1B'], \n",
" 2: ['age: 37', 'age: 18', 'age: 19', 'age: 54', 'age: 70', 'age: 22', 'age: 45', 'age: 62', 'age: 31', 'age: 39', 'age: 67', 'age: 24', 'age: 59', 'age: 20', 'age: 77', 'age: 68', 'age: 41', 'age: 50', 'age: 35', 'age: 36', 'age: 43', 'age: 52', 'age: 21', 'age: 63', 'age: 29', 'age: 25', 'age: 26', 'age: 28', 'age: 53', 'age: 69'], \n",
" 3: ['diagnosis: Control', 'diagnosis: CD', 'diagnosis: UC', None, 'inflammation: non', 'inflammation: yes'], \n",
" 4: ['gastroscopy: FALSE', 'gastroscopy: TRUE', None, 'tissue: transversum', 'tissue: sigmoideum'], \n",
" 5: ['inflammation: non', 'inflammation: yes', None, 'tissue: descendens', 'tissue: sigmoideum', 'tissue: rectum'], \n",
" 6: ['tissue: ascendens', 'tissue: sigmoideum', 'tissue: ileum', 'tissue: rectum', 'tissue: descendens', 'tissue: transversum', 'tissue: coecum', None, 'tissue: bulbus durodenum', 'tissue: valvula']}\n",
"\n",
"# Create clinical data DataFrame properly\n",
"# We need to account for the fact that each list in the dictionary may have different lengths\n",
"# Find the maximum length\n",
"max_length = max(len(values) for values in sample_char_dict.values())\n",
"\n",
"# Pad shorter lists with NaN\n",
"padded_dict = {}\n",
"for key, values in sample_char_dict.items():\n",
" padded_values = values + [None] * (max_length - len(values))\n",
" padded_dict[key] = padded_values\n",
"\n",
"# Create DataFrame from padded dictionary\n",
"clinical_data = pd.DataFrame(padded_dict)\n",
"\n",
"# Extract clinical features\n",
"clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"# Preview clinical features\n",
"preview_clinical = preview_df(clinical_features)\n",
"print(\"Preview of extracted clinical features:\")\n",
"print(preview_clinical)\n",
"\n",
"# Save clinical features to CSV\n",
"clinical_features.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "e97fadc0",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1012839",
"metadata": {},
"outputs": [],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "d07b021e",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0344dfb",
"metadata": {},
"outputs": [],
"source": [
"# Looking at the gene identifiers provided, they appear to be Ensembl gene IDs with an \"_at\" suffix\n",
"# Ensembl IDs typically start with \"ENSG\" for human genes, followed by a unique number\n",
"# These are not standard human gene symbols (like BRCA1, TP53, etc.)\n",
"# Therefore, they need to be mapped to standard gene symbols for better interpretability\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "a6d337dc",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1ddbc0d3",
"metadata": {},
"outputs": [],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "d5e080bc",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "50003d42",
"metadata": {},
"outputs": [],
"source": [
"# 1. Looking at the gene annotation preview, we need to extract gene symbols from 'Description'\n",
"# Example: \"tetraspanin 6 [Source:HGNC Symbol;Acc:11858]\" should yield \"TSPAN6\"\n",
"\n",
"# Let's check the Description field format\n",
"print(\"\\nSample Description fields:\")\n",
"print(gene_annotation['Description'].head(10).tolist())\n",
"\n",
"# Create a function to extract gene symbols from the Description field\n",
"def extract_gene_name(description):\n",
" \"\"\"Extract gene name from the description field - everything before [Source: part\"\"\"\n",
" if pd.isna(description):\n",
" return None\n",
" \n",
" # Extract the gene name - everything before [Source: part\n",
" if '[Source:' in description:\n",
" gene_name = description.split('[Source:')[0].strip()\n",
" return gene_name\n",
" \n",
" return None\n",
"\n",
"# Apply the function to extract gene names\n",
"gene_annotation['Gene_Name'] = gene_annotation['Description'].apply(extract_gene_name)\n",
"\n",
"# Print some examples to verify extraction\n",
"print(\"\\nSample Gene Name extractions:\")\n",
"sample_extractions = gene_annotation[['ID', 'Description', 'Gene_Name']].head(10)\n",
"print(sample_extractions)\n",
"\n",
"# Use extract_human_gene_symbols to get likely gene symbols from the gene names\n",
"gene_annotation['Symbol'] = gene_annotation['Gene_Name'].apply(extract_human_gene_symbols)\n",
"\n",
"# Check which rows have symbols\n",
"has_symbols = gene_annotation['Symbol'].apply(lambda x: len(x) > 0 if isinstance(x, list) else False)\n",
"print(f\"\\nRows with extracted symbols: {has_symbols.sum()} out of {len(gene_annotation)}\")\n",
"\n",
"# Create an exploded dataframe for mapping\n",
"mapping_df = gene_annotation[['ID', 'Symbol']].copy()\n",
"# Convert empty lists to None to make dropna work correctly\n",
"mapping_df.loc[mapping_df['Symbol'].apply(lambda x: isinstance(x, list) and len(x) == 0), 'Symbol'] = None\n",
"# Explode the Symbol column to handle cases where multiple symbols were extracted\n",
"mapping_df = mapping_df.explode('Symbol')\n",
"mapping_df = mapping_df.dropna(subset=['Symbol'])\n",
"mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'})\n",
"\n",
"# Print the shape of the mapping dataframe\n",
"print(f\"\\nMapping dataframe shape: {mapping_df.shape}\")\n",
"print(\"\\nSample mappings:\")\n",
"print(mapping_df.head(10))\n",
"\n",
"# Apply the mapping to convert probe-level data to gene expression data\n",
"gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Print the shape of the resulting gene expression data\n",
"print(f\"\\nAfter mapping, gene data dimensions: {gene_data_mapped.shape[0]} genes × {gene_data_mapped.shape[1]} samples\")\n",
"\n",
"# Preview the first few gene symbols\n",
"if gene_data_mapped.shape[0] > 0:\n",
" print(\"\\nFirst few gene symbols after mapping:\")\n",
" print(gene_data_mapped.index[:10])\n",
"else:\n",
" print(\"\\nWarning: No genes were mapped. Check mapping process.\")\n",
"\n",
"# Save the gene expression data\n",
"gene_data_mapped.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
"\n",
"# Update the gene_data variable for subsequent steps\n",
"gene_data = gene_data_mapped\n"
]
},
{
"cell_type": "markdown",
"id": "6fe8af0e",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9980d133",
"metadata": {},
"outputs": [],
"source": [
"# 1. Re-extract clinical data from the SOFT file to ensure we have properly structured data\n",
"print(\"Re-extracting clinical data from the SOFT file...\")\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# Get raw clinical data\n",
"background_info, clinical_df = get_background_and_clinical_data(matrix_file)\n",
"\n",
"# Transpose the clinical data to have samples as columns\n",
"clinical_df_t = clinical_df.T\n",
"# First row contains the geo accessions, use it as column names\n",
"clinical_df_t.columns = clinical_df_t.iloc[0]\n",
"# Remove the first row that has been used as column names\n",
"clinical_df_t = clinical_df_t.iloc[1:]\n",
"\n",
"# Now extract relevant clinical features (for Crohn's Disease and age)\n",
"trait_values = []\n",
"if trait_row is not None:\n",
" for col in clinical_df_t.columns:\n",
" trait_val = convert_trait(clinical_df_t.iloc[trait_row-1, col]) # Adjust index for 0-based\n",
" trait_values.append(trait_val)\n",
"\n",
"age_values = []\n",
"if age_row is not None:\n",
" for col in clinical_df_t.columns:\n",
" age_val = convert_age(clinical_df_t.iloc[age_row-1, col]) # Adjust index for 0-based\n",
" age_values.append(age_val)\n",
"\n",
"# Create proper clinical features dataframe with samples as rows\n",
"sample_ids = clinical_df_t.columns.tolist()\n",
"clinical_features = pd.DataFrame()\n",
"\n",
"if trait_values:\n",
" clinical_features[trait] = trait_values\n",
"if age_values:\n",
" clinical_features['Age'] = age_values\n",
"\n",
"# Set index to sample IDs\n",
"clinical_features.index = sample_ids\n",
"print(f\"Re-extracted clinical features shape: {clinical_features.shape}\")\n",
"print(\"Clinical features preview:\")\n",
"print(clinical_features.head())\n",
"\n",
"# Save the improved clinical features\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_features.to_csv(out_clinical_data_file)\n",
"print(f\"Improved clinical features saved to {out_clinical_data_file}\")\n",
"\n",
"# Check if clinical features were successfully extracted with non-null values\n",
"if clinical_features.empty or clinical_features[trait].isnull().all():\n",
" print(\"Failed to extract valid clinical features with trait values. Dataset cannot be processed further.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=False,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"Valid clinical features with trait values could not be extracted.\"\n",
" )\n",
"else:\n",
" # 2. Link clinical and genetic data\n",
" print(\"Linking clinical and genetic data...\")\n",
" \n",
" # Transpose gene_data to have samples as rows and genes as columns\n",
" gene_data_t = gene_data.T\n",
" \n",
" # Keep only common samples between clinical and gene data\n",
" common_samples = list(set(clinical_features.index) & set(gene_data_t.index))\n",
" print(f\"Common samples between clinical and gene data: {len(common_samples)}\")\n",
" \n",
" if len(common_samples) == 0:\n",
" print(\"No common samples between clinical and gene data. Dataset cannot be processed further.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"No common samples between clinical and gene data.\"\n",
" )\n",
" else:\n",
" # Filter both datasets to only include common samples\n",
" clinical_common = clinical_features.loc[common_samples]\n",
" gene_data_common = gene_data_t.loc[common_samples]\n",
" \n",
" # Merge the datasets\n",
" linked_data = pd.concat([clinical_common, gene_data_common], axis=1)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" \n",
" # 3. Handle missing values systematically\n",
" linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
" print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
" \n",
" # Check if there are still samples after missing value handling\n",
" if linked_data.shape[0] == 0:\n",
" print(\"Error: No samples remain after handling missing values.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"All samples were removed during missing value handling.\"\n",
" )\n",
" else:\n",
" # 4. Check if the dataset is biased\n",
" print(\"\\nChecking for bias in feature variables:\")\n",
" is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" \n",
" # 5. Conduct final quality validation\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains gene expression data for Crohn's Disease.\"\n",
" )\n",
" \n",
" # 6. Save linked data if usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")\n"
]
},
{
"cell_type": "markdown",
"id": "1b21d50f",
"metadata": {},
"source": [
"### Step 8: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "79d61edb",
"metadata": {},
"outputs": [],
"source": [
"# 1. Skip gene symbol normalization and use the accession numbers directly\n",
"print(\"Processing gene expression data...\")\n",
"# Don't normalize - these are GenBank accessions, not gene symbols\n",
"gene_data_normalized = gene_data # Use the original gene data with accession numbers\n",
"\n",
"# Save the gene data (without normalization)\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
"print(f\"Gene data shape: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# 2. Extract clinical features from scratch\n",
"print(\"Extracting clinical features from original clinical data...\")\n",
"clinical_features = geo_select_clinical_features(\n",
" clinical_data, \n",
" trait, \n",
" trait_row,\n",
" convert_trait,\n",
" age_row,\n",
" convert_age,\n",
" gender_row,\n",
" convert_gender\n",
")\n",
"\n",
"# Save the extracted clinical features\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_features.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
"\n",
"print(\"Clinical features preview:\")\n",
"print(preview_df(clinical_features))\n",
"\n",
"# Check if clinical features were successfully extracted\n",
"if clinical_features.empty:\n",
" print(\"Failed to extract clinical features. Dataset cannot be processed further.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=False,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"Clinical features could not be extracted from the dataset.\"\n",
" )\n",
" print(\"Dataset deemed not usable due to lack of clinical features.\")\n",
"else:\n",
" # 2. Link clinical and genetic data\n",
" print(\"Linking clinical and genetic data...\")\n",
" linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
" # Check if the linked data has gene features\n",
" if linked_data.shape[1] <= 1:\n",
" print(\"Error: Linked data has no gene features. Dataset cannot be processed further.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=False,\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=linked_data,\n",
" note=\"Failed to link gene expression data with clinical features.\"\n",
" )\n",
" else:\n",
" # 3. Handle missing values systematically\n",
" linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
" print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
" \n",
" # Check if there are still samples after missing value handling\n",
" if linked_data.shape[0] == 0:\n",
" print(\"Error: No samples remain after handling missing values.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"All samples were removed during missing value handling.\"\n",
" )\n",
" else:\n",
" # 4. Check if the dataset is biased\n",
" print(\"\\nChecking for bias in feature variables:\")\n",
" is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
" # 5. Conduct final quality validation\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains gene expression data for Crohn's Disease patients and healthy controls.\"\n",
" )\n",
"\n",
" # 6. Save linked data if usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|