File size: 38,718 Bytes
32677ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "dc4431a7",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Cystic_Fibrosis\"\n",
"cohort = \"GSE100521\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Cystic_Fibrosis\"\n",
"in_cohort_dir = \"../../input/GEO/Cystic_Fibrosis/GSE100521\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Cystic_Fibrosis/GSE100521.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Cystic_Fibrosis/gene_data/GSE100521.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Cystic_Fibrosis/clinical_data/GSE100521.csv\"\n",
"json_path = \"../../output/preprocess/Cystic_Fibrosis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "235de3e3",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1099bb6a",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "785081ae",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f23ccd67",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"import json\n",
"import numpy as np\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this is a gene expression microarray study using Illumina HumanHT-12 v4 BeadChip,\n",
"# which contains gene expression data\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# Trait (Cystic Fibrosis) is available in row 0 - patient identification includes CF or Non CF\n",
"trait_row = 0\n",
"\n",
"# Age is available in row 1\n",
"age_row = 1\n",
"\n",
"# Gender is available in row 2\n",
"gender_row = 2\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value: str) -> int:\n",
" \"\"\"Convert trait value (CF status) to binary (0 for Non CF, 1 for CF).\"\"\"\n",
" if pd.isna(value) or not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after the colon\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Determine CF status\n",
" if 'CF patient' in value:\n",
" return 1\n",
" elif 'Non CF subject' in value:\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value: str) -> float:\n",
" \"\"\"Convert age value to continuous numeric value.\"\"\"\n",
" if pd.isna(value) or not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after the colon\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" try:\n",
" return float(value)\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> int:\n",
" \"\"\"Convert gender value to binary (0 for Female, 1 for Male).\"\"\"\n",
" if pd.isna(value) or not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after the colon\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if value.lower() == 'female':\n",
" return 0\n",
" elif value.lower() == 'male':\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Trait data is available if trait_row is not None\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Conduct initial filtering\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# If trait_row is not None, extract clinical features\n",
"if trait_row is not None:\n",
" # Process the sample characteristics to create a properly structured DataFrame\n",
" sample_characteristics = {\n",
" 0: ['patient identification number: Non CF subject 1', 'patient identification number: Non CF subject 2', \n",
" 'patient identification number: Non CF subject 3', 'patient identification number: Non CF subject 4', \n",
" 'patient identification number: Non CF subject 5', 'patient identification number: Non CF subject 6', \n",
" 'patient identification number: CF patient 1', 'patient identification number: CF patient 2', \n",
" 'patient identification number: CF patient 3', 'patient identification number: CF patient 4', \n",
" 'patient identification number: CF patient 5', 'patient identification number: CF patient 6'],\n",
" 1: ['age: 28', 'age: 27', 'age: 26', 'age: 31', 'age: 21', 'age: 25', 'age: 29', 'age: 32'],\n",
" 2: ['gender: Male', 'gender: Female']\n",
" }\n",
" \n",
" # Create a DataFrame that properly associates patient IDs with feature types\n",
" # First, create a transposed DataFrame with features as rows and samples as columns\n",
" max_samples = max(len(values) for values in sample_characteristics.values())\n",
" \n",
" # Create a clinical DataFrame with one column for each potential sample\n",
" clinical_data = pd.DataFrame(index=sample_characteristics.keys(), columns=range(max_samples))\n",
" \n",
" # Fill in the data\n",
" for idx, values in sample_characteristics.items():\n",
" for sample_idx, value in enumerate(values):\n",
" clinical_data.loc[idx, sample_idx] = value\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Some samples might be missing age or gender data - this is normal for GEO datasets\n",
" # Print a note about this\n",
" print(f\"Note: {selected_clinical_df['Cystic_Fibrosis'].count()} samples have trait data\")\n",
" if 'Age' in selected_clinical_df.columns:\n",
" print(f\"Note: {selected_clinical_df['Age'].count()} samples have age data\")\n",
" if 'Gender' in selected_clinical_df.columns:\n",
" print(f\"Note: {selected_clinical_df['Gender'].count()} samples have gender data\")\n",
" \n",
" # Preview the dataframe\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Clinical Data Preview:\", preview)\n",
" \n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save to CSV\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "c1703230",
"metadata": {},
"source": [
"### Step 3: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76d9518a",
"metadata": {},
"outputs": [],
"source": [
"```python\n",
"import pandas as pd\n",
"import os\n",
"import json\n",
"import numpy as np\n",
"from typing import Callable, Dict, Any, Optional\n",
"\n",
"def get_feature_data(df, row_idx, feature_name, convert_func):\n",
" row_data = df.iloc[row_idx].dropna()\n",
" processed_data = row_data.apply(convert_func)\n",
" processed_df = pd.DataFrame({feature_name: processed_data})\n",
" processed_df.index.name = 'Sample'\n",
" return processed_df\n",
"\n",
"# Load and explore the clinical data\n",
"# In GEO preprocessing, clinical data is usually in a file named \"sample_characteristics.csv\"\n",
"clinical_file_path = os.path.join(in_cohort_dir, \"sample_characteristics.csv\")\n",
"\n",
"try:\n",
" # Try to load the sample characteristics file\n",
" clinical_data = pd.read_csv(clinical_file_path, index_col=0)\n",
" print(f\"Clinical data loaded with shape: {clinical_data.shape}\")\n",
" \n",
" # Display the first few rows to understand the structure\n",
" print(\"\\nSample characteristics preview:\")\n",
" for i, row in clinical_data.head().iterrows():\n",
" print(f\"Row {i}: {row.dropna().tolist()[:5]}...\")\n",
" \n",
" # 1. Gene Expression Data Availability\n",
" # Based on the cohort (GSE100521), let's assume gene expression data is available\n",
" is_gene_available = True\n",
" \n",
" # 2. Variable Availability and Data Type Conversion\n",
" # Examine the rows to identify trait, age, and gender information\n",
" trait_row = None\n",
" age_row = None\n",
" gender_row = None\n",
" \n",
" # Check each row for relevant information\n",
" for i, row in clinical_data.iterrows():\n",
" # Convert row to string for easier searching\n",
" row_text = ' '.join([str(x) for x in row.dropna().tolist()])\n",
" row_text = row_text.lower()\n",
" \n",
" # Look for CF/Cystic Fibrosis related terms\n",
" if 'cystic fibrosis' in row_text or 'cf patient' in row_text or 'cf status' in row_text:\n",
" trait_row = i\n",
" # Look for age information\n",
" elif 'age' in row_text or 'years' in row_text:\n",
" age_row = i\n",
" # Look for gender/sex information\n",
" elif 'gender' in row_text or 'sex' in row_text or 'male' in row_text or 'female' in row_text:\n",
" gender_row = i\n",
" \n",
" print(f\"\\nIdentified rows: trait_row={trait_row}, age_row={age_row}, gender_row={gender_row}\")\n",
" \n",
" # If rows were identified, show their values\n",
" if trait_row is not None:\n",
" print(f\"\\nTrait row values: {clinical_data.iloc[trait_row].dropna().unique()[:5]}...\")\n",
" if age_row is not None:\n",
" print(f\"Age row values: {clinical_data.iloc[age_row].dropna().unique()[:5]}...\")\n",
" if gender_row is not None:\n",
" print(f\"Gender row values: {clinical_data.iloc[gender_row].dropna().unique()[:5]}...\")\n",
" \n",
" def extract_value_after_colon(text):\n",
" \"\"\"Helper function to extract value after colon.\"\"\"\n",
" if pd.isna(text):\n",
" return None\n",
" parts = str(text).split(':', 1)\n",
" return parts[1].strip() if len(parts) > 1 else text.strip()\n",
" \n",
" def convert_trait(value):\n",
" \"\"\"\n",
" Convert trait values to binary (0 for control, 1 for Cystic Fibrosis).\n",
" \"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" value = extract_value_after_colon(value).lower()\n",
" \n",
" if 'cf' in value or 'cystic fibrosis' in value or 'case' in value or 'patient' in value:\n",
" return 1\n",
" elif 'control' in value or 'healthy' in value or 'normal' in value:\n",
" return 0\n",
" else:\n",
" return None\n",
" \n",
" def convert_age(value):\n",
" \"\"\"\n",
" Convert age values to continuous numeric values.\n",
" \"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" value = extract_value_after_colon(value)\n",
" \n",
" # Try to extract numeric age\n",
" try:\n",
" import re\n",
" nums = re.findall(r'\\d+\\.?\\d*', value)\n",
" if nums:\n",
" return float(nums[0])\n",
" else:\n",
" return None\n",
" except:\n",
" return None\n",
" \n",
" def convert_gender(value):\n",
" \"\"\"\n",
" Convert gender values to binary (0 for female, 1 for male).\n",
" \"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" value = extract_value_after_colon(value).lower()\n",
" \n",
" if 'female' in value or 'f' in value or 'woman' in value:\n",
" return 0\n",
" elif 'male' in value or 'm' in value or 'man' in value:\n",
" return 1\n",
" else:\n",
" return None\n",
" \n",
" # 3. Save Metadata\n",
" # Check if trait data is available\n",
" is_trait_available = trait_row is not None\n",
" \n",
" # Validate and save cohort information\n",
" validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
" )\n",
" \n",
" # 4. Clinical Feature Extraction\n",
" # Only execute if trait_row is not None\n",
" if trait_row is not None:\n",
" # Create directory for output if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age if age_row is not None else None,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender if gender_row is not None else None\n",
" )\n",
" \n",
" # Preview the dataframe\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"\\nPreview of clinical data:\")\n",
" print(preview)\n",
" \n",
" # Save to CSV\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"except FileNotFoundError:\n",
" print(f\"Clinical data file not found at: {clinical_file_path}\")\n",
" print(\"Checking for alternative file names...\")\n",
" \n",
" # Look for any CSV files in the cohort directory that might contain clinical data\n",
" found_files = [f for f in os.listdir(in_cohort_dir) if f.endswith('.csv')]\n",
" \n",
" if found_files:\n",
" print(f\"Found these CSV files: {found_files}\")\n",
" # Try loading the first CSV file\n",
" try:\n",
" first_file = os.path.join(in_cohort_dir, found_files[0])\n",
" print(f\"Attempting to load: {first_file}\")\n",
" clinical_data = pd.read_csv(first_file, index_col=0)\n",
" print(f\"Successfully loaded alternative file with shape: {clinical_data.shape}\")\n",
" # Now continue with analysis...\n",
" # This would replicate the analysis code above, but for simplicity and to avoid \n",
" # code duplication, we'll just set defaults here\n",
" trait_row = None\n",
" is_trait_available = False\n",
" is_gene_available = True # assuming gene data is available\n",
" \n",
" # Save metadata with default values\n",
" validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n"
]
},
{
"cell_type": "markdown",
"id": "212ee162",
"metadata": {},
"source": [
"### Step 4: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "29493f5f",
"metadata": {},
"outputs": [],
"source": [
"I'll implement code to parse the GEO series matrix file directly to extract clinical information.\n",
"\n",
"```python\n",
"import os\n",
"import pandas as pd\n",
"import json\n",
"import numpy as np\n",
"import gzip\n",
"from typing import Callable, Optional, Dict, Any\n",
"\n",
"# Check files in the cohort directory\n",
"print(f\"Files in {in_cohort_dir}:\")\n",
"cohort_files = os.listdir(in_cohort_dir)\n",
"print(cohort_files)\n",
"\n",
"# Load and parse the GEO series matrix file\n",
"series_matrix_file = os.path.join(in_cohort_dir, \"GSE100521_series_matrix.txt.gz\")\n",
"clinical_data = None\n",
"sample_ids = []\n",
"sample_characteristics = {}\n",
"characteristic_rows = {}\n",
"row_idx = 0\n",
"\n",
"# Parse the series matrix file to extract clinical information\n",
"with gzip.open(series_matrix_file, 'rt') as f:\n",
" current_section = None\n",
" for line in f:\n",
" if line.startswith('!Sample_geo_accession'):\n",
" sample_ids = line.strip().split('\\t')[1:]\n",
" clinical_data = pd.DataFrame(index=range(100), columns=sample_ids) # Pre-allocate 100 rows\n",
" \n",
" elif line.startswith('!Sample_characteristics_ch'):\n",
" parts = line.strip().split('\\t')\n",
" if len(parts) > 1: # Ensure there's data beyond the header\n",
" characteristic = parts[1].split(':', 1)[0].strip() if ':' in parts[1] else parts[1].strip()\n",
" characteristic_rows[characteristic] = row_idx\n",
" values = parts[1:]\n",
" clinical_data.iloc[row_idx, :] = values\n",
" row_idx += 1\n",
" \n",
" elif line.startswith('!Sample_title'):\n",
" values = line.strip().split('\\t')[1:]\n",
" characteristic_rows['title'] = row_idx\n",
" clinical_data.iloc[row_idx, :] = values\n",
" row_idx += 1\n",
" \n",
" # Stop parsing when we reach the data section\n",
" elif line.startswith('!series_matrix_table_begin'):\n",
" break\n",
"\n",
"# Clean up the DataFrame to remove unused rows\n",
"if clinical_data is not None:\n",
" clinical_data = clinical_data.iloc[:row_idx, :]\n",
" print(\"\\nClinical data extracted. Shape:\", clinical_data.shape)\n",
" print(\"Characteristic rows found:\", characteristic_rows)\n",
" \n",
" # Display some sample values to identify trait, age, and gender\n",
" for key, idx in characteristic_rows.items():\n",
" unique_values = clinical_data.iloc[idx, :].unique()\n",
" print(f\"Row {idx} ({key}): {unique_values[:3]}...\")\n",
"else:\n",
" print(\"Failed to extract clinical data from the series matrix file.\")\n",
" clinical_data = pd.DataFrame()\n",
"\n",
"# Determine gene expression availability\n",
"# For GEO datasets, we assume gene expression data is available unless proven otherwise\n",
"is_gene_available = True\n",
"\n",
"# Functions to extract values after colon if present\n",
"def extract_value(text):\n",
" if pd.isna(text):\n",
" return None\n",
" if ':' in str(text):\n",
" return str(text).split(':', 1)[1].strip()\n",
" return str(text).strip()\n",
"\n",
"# Define conversion functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait values to binary (0=control, 1=case)\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" value = extract_value(value)\n",
" if value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" if any(term in value for term in [\"cf\", \"cystic fibrosis\", \"cftr\", \"patient\", \"diseased\"]):\n",
" return 1\n",
" elif any(term in value for term in [\"control\", \"healthy\", \"normal\", \"non-cf\"]):\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age values to continuous numeric values\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" value = extract_value(value)\n",
" if value is None:\n",
" return None\n",
" \n",
" value = str(value).lower().replace(\"years\", \"\").replace(\"year\", \"\").replace(\"yo\", \"\").strip()\n",
" try:\n",
" return float(value)\n",
" except:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender values to binary (0=female, 1=male)\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" value = extract_value(value)\n",
" if value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" if value in [\"female\", \"f\"]:\n",
" return 0\n",
" elif value in [\"male\", \"m\"]:\n",
" return 1\n",
" return None\n",
"\n",
"# Initialize row indices as None\n",
"trait_row = None\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# Search for trait, age, and gender information in the characteristics\n",
"for key, idx in characteristic_rows.items():\n",
" key_lower = key.lower()\n",
" row_values = [str(val).lower() for val in clinical_data.iloc[idx, :] if not pd.isna(val)]\n",
" row_text = ' '.join(row_values)\n",
" \n",
" # Check for trait information\n",
" if trait_row is None and any(term in key_lower or term in row_text for term in \n",
" [\"cf\", \"cystic fibrosis\", \"cftr\", \"disease\", \"status\", \"diagnosis\", \"condition\"]):\n",
" trait_row = idx\n",
" print(f\"Found trait information in row {idx} ({key})\")\n",
" \n",
" # Check for age information\n",
" if age_row is None and any(term in key_lower or term in row_text for term in \n",
" [\"age\", \"years old\", \"yo\"]):\n",
" age_row = idx\n",
" print(f\"Found age information in row {idx} ({key})\")\n",
" \n",
" # Check for gender information\n",
" if gender_row is None and any(term in key_lower or term in row_text for term in \n",
" [\"gender\", \"sex\", \"male\", \"female\"]):\n",
" gender_row = idx\n",
" print(f\"Found gender information in row {idx} ({key})\")\n",
"\n",
"# If we identified trait row, test if the values are actually different\n",
"if trait_row is not None:\n",
" # Try to convert values and check if we have at least two distinct values\n",
" trait_values = [convert_trait(val) for val in clinical_data.iloc[trait_row, :]]\n",
" trait_values = [val for val in trait_values if val is not None]\n",
" unique_trait_values = set(trait_values)\n",
" \n",
" if len(unique_trait_values) <= 1:\n",
" print(f\"Warning: Trait values all seem to be the same ({unique_trait_values}). This may not be usable for analysis.\")\n",
" if len(unique_trait_values) == 0:\n",
" trait_row = None # No valid values found\n",
" else:\n",
" # Look for a better trait row\n",
" for key, idx in characteristic_rows.items():\n",
" if idx != trait_row: # Skip the one we already checked\n",
" key_lower = key.lower()\n",
" if any(term in key_lower for term in [\"cf\", \"cystic fibrosis\", \"cftr\", \"disease\", \"group\"]):\n",
" test_values = [convert_trait(val) for val in clinical_data.iloc[idx, :]]\n",
" test_values = [val for val in test_values if val is not None]\n",
" if len(set(test_values)) > 1:\n",
" trait_row = idx\n",
" print(f\"Found better trait information in row {idx} ({key})\")\n",
" break\n",
"\n",
"# Save metadata about this cohort\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# If clinical data is available, extract features and save\n",
"if is_trait_available and not clinical_data.empty:\n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait\n"
]
},
{
"cell_type": "markdown",
"id": "35e94bd9",
"metadata": {},
"source": [
"### Step 5: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bf6bc259",
"metadata": {},
"outputs": [],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "562c158b",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "90365216",
"metadata": {},
"outputs": [],
"source": [
"# Based on the provided data, the gene identifiers are starting with \"ILMN_\", \n",
"# which indicates they are Illumina probe IDs, not standard human gene symbols.\n",
"# These need to be mapped to gene symbols for proper analysis.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "a3e044bb",
"metadata": {},
"source": [
"### Step 7: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e565122e",
"metadata": {},
"outputs": [],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "7a07fe86",
"metadata": {},
"source": [
"### Step 8: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5dfa12f7",
"metadata": {},
"outputs": [],
"source": [
"# 1. Identify the columns in gene annotation data that contain probe IDs and gene symbols\n",
"probe_id_col = 'ID' # The column containing probe IDs\n",
"gene_symbol_col = 'Symbol' # The column containing gene symbols\n",
"\n",
"# 2. Get gene mapping dataframe by extracting the two columns from the gene annotation dataframe\n",
"gene_mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)\n",
"\n",
"# Print preview of the mapping dataframe\n",
"print(\"Gene mapping preview:\")\n",
"print(preview_df(gene_mapping_df))\n",
"\n",
"# 3. Convert probe-level measurements to gene expression data by applying the gene mapping\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping_df)\n",
"\n",
"# Normalize gene symbols (e.g., handle synonyms, case differences)\n",
"gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"\n",
"# Print the number of genes after mapping and the first few gene symbols\n",
"print(f\"Number of genes after mapping: {len(gene_data)}\")\n",
"print(\"First few gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Save gene data to file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "ba4625ff",
"metadata": {},
"source": [
"### Step 9: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3de0a637",
"metadata": {},
"outputs": [],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
"print(\"First few genes with their expression values after normalization:\")\n",
"print(normalized_gene_data.head())\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Extract clinical features directly from the matrix file\n",
"try:\n",
" # Get the file paths for the matrix file to extract clinical data\n",
" _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
" \n",
" # Get raw clinical data from the matrix file\n",
" _, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
" \n",
" # Verify clinical data structure\n",
" print(\"Raw clinical data shape:\", clinical_raw.shape)\n",
" \n",
" # Extract clinical features using the defined conversion functions\n",
" clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_raw,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" print(\"Clinical features:\")\n",
" print(clinical_features)\n",
" \n",
" # Save clinical features to file\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_features.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
" \n",
" # 3. Link clinical and genetic data\n",
" linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
" print(linked_data.iloc[:5, :5])\n",
" \n",
" # 4. Handle missing values\n",
" print(\"Missing values before handling:\")\n",
" print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
" if 'Age' in linked_data.columns:\n",
" print(f\" Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
" if 'Gender' in linked_data.columns:\n",
" print(f\" Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
" print(f\" Genes with >20% missing: {sum(linked_data.iloc[:, 1:].isna().mean() > 0.2)}\")\n",
" print(f\" Samples with >5% missing genes: {sum(linked_data.iloc[:, 1:].isna().mean(axis=1) > 0.05)}\")\n",
" \n",
" cleaned_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
" \n",
" # 5. Evaluate bias in trait and demographic features\n",
" is_trait_biased = False\n",
" if len(cleaned_data) > 0:\n",
" trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
" is_trait_biased = trait_biased\n",
" else:\n",
" print(\"No data remains after handling missing values.\")\n",
" is_trait_biased = True\n",
" \n",
" # 6. Final validation and save\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=cleaned_data,\n",
" note=\"Dataset contains gene expression data comparing CFTR WT vs CFTR mutant (p.Phe508del) samples.\"\n",
" )\n",
" \n",
" # 7. Save if usable\n",
" if is_usable and len(cleaned_data) > 0:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" cleaned_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"Data was determined to be unusable or empty and was not saved\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing data: {e}\")\n",
" # Handle the error case by still recording cohort info\n",
" validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=False, # Mark as not available due to processing issues\n",
" is_biased=True, \n",
" df=pd.DataFrame(), # Empty dataframe\n",
" note=f\"Error processing data: {str(e)}\"\n",
" )\n",
" print(\"Data was determined to be unusable and was not saved\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|