File size: 38,718 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dc4431a7",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Cystic_Fibrosis\"\n",
    "cohort = \"GSE100521\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Cystic_Fibrosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Cystic_Fibrosis/GSE100521\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Cystic_Fibrosis/GSE100521.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Cystic_Fibrosis/gene_data/GSE100521.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Cystic_Fibrosis/clinical_data/GSE100521.csv\"\n",
    "json_path = \"../../output/preprocess/Cystic_Fibrosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "235de3e3",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1099bb6a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "785081ae",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f23ccd67",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "import json\n",
    "import numpy as np\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this is a gene expression microarray study using Illumina HumanHT-12 v4 BeadChip,\n",
    "# which contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# Trait (Cystic Fibrosis) is available in row 0 - patient identification includes CF or Non CF\n",
    "trait_row = 0\n",
    "\n",
    "# Age is available in row 1\n",
    "age_row = 1\n",
    "\n",
    "# Gender is available in row 2\n",
    "gender_row = 2\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"Convert trait value (CF status) to binary (0 for Non CF, 1 for CF).\"\"\"\n",
    "    if pd.isna(value) or not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Determine CF status\n",
    "    if 'CF patient' in value:\n",
    "        return 1\n",
    "    elif 'Non CF subject' in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value: str) -> float:\n",
    "    \"\"\"Convert age value to continuous numeric value.\"\"\"\n",
    "    if pd.isna(value) or not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value: str) -> int:\n",
    "    \"\"\"Convert gender value to binary (0 for Female, 1 for Male).\"\"\"\n",
    "    if pd.isna(value) or not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value.lower() == 'female':\n",
    "        return 0\n",
    "    elif value.lower() == 'male':\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Trait data is available if trait_row is not None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Conduct initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# If trait_row is not None, extract clinical features\n",
    "if trait_row is not None:\n",
    "    # Process the sample characteristics to create a properly structured DataFrame\n",
    "    sample_characteristics = {\n",
    "        0: ['patient identification number: Non CF subject 1', 'patient identification number: Non CF subject 2', \n",
    "            'patient identification number: Non CF subject 3', 'patient identification number: Non CF subject 4', \n",
    "            'patient identification number: Non CF subject 5', 'patient identification number: Non CF subject 6', \n",
    "            'patient identification number: CF patient 1', 'patient identification number: CF patient 2', \n",
    "            'patient identification number: CF patient 3', 'patient identification number: CF patient 4', \n",
    "            'patient identification number: CF patient 5', 'patient identification number: CF patient 6'],\n",
    "        1: ['age: 28', 'age: 27', 'age: 26', 'age: 31', 'age: 21', 'age: 25', 'age: 29', 'age: 32'],\n",
    "        2: ['gender: Male', 'gender: Female']\n",
    "    }\n",
    "    \n",
    "    # Create a DataFrame that properly associates patient IDs with feature types\n",
    "    # First, create a transposed DataFrame with features as rows and samples as columns\n",
    "    max_samples = max(len(values) for values in sample_characteristics.values())\n",
    "    \n",
    "    # Create a clinical DataFrame with one column for each potential sample\n",
    "    clinical_data = pd.DataFrame(index=sample_characteristics.keys(), columns=range(max_samples))\n",
    "    \n",
    "    # Fill in the data\n",
    "    for idx, values in sample_characteristics.items():\n",
    "        for sample_idx, value in enumerate(values):\n",
    "            clinical_data.loc[idx, sample_idx] = value\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Some samples might be missing age or gender data - this is normal for GEO datasets\n",
    "    # Print a note about this\n",
    "    print(f\"Note: {selected_clinical_df['Cystic_Fibrosis'].count()} samples have trait data\")\n",
    "    if 'Age' in selected_clinical_df.columns:\n",
    "        print(f\"Note: {selected_clinical_df['Age'].count()} samples have age data\")\n",
    "    if 'Gender' in selected_clinical_df.columns:\n",
    "        print(f\"Note: {selected_clinical_df['Gender'].count()} samples have gender data\")\n",
    "    \n",
    "    # Preview the dataframe\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Clinical Data Preview:\", preview)\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save to CSV\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c1703230",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "76d9518a",
   "metadata": {},
   "outputs": [],
   "source": [
    "```python\n",
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "import numpy as np\n",
    "from typing import Callable, Dict, Any, Optional\n",
    "\n",
    "def get_feature_data(df, row_idx, feature_name, convert_func):\n",
    "    row_data = df.iloc[row_idx].dropna()\n",
    "    processed_data = row_data.apply(convert_func)\n",
    "    processed_df = pd.DataFrame({feature_name: processed_data})\n",
    "    processed_df.index.name = 'Sample'\n",
    "    return processed_df\n",
    "\n",
    "# Load and explore the clinical data\n",
    "# In GEO preprocessing, clinical data is usually in a file named \"sample_characteristics.csv\"\n",
    "clinical_file_path = os.path.join(in_cohort_dir, \"sample_characteristics.csv\")\n",
    "\n",
    "try:\n",
    "    # Try to load the sample characteristics file\n",
    "    clinical_data = pd.read_csv(clinical_file_path, index_col=0)\n",
    "    print(f\"Clinical data loaded with shape: {clinical_data.shape}\")\n",
    "    \n",
    "    # Display the first few rows to understand the structure\n",
    "    print(\"\\nSample characteristics preview:\")\n",
    "    for i, row in clinical_data.head().iterrows():\n",
    "        print(f\"Row {i}: {row.dropna().tolist()[:5]}...\")\n",
    "    \n",
    "    # 1. Gene Expression Data Availability\n",
    "    # Based on the cohort (GSE100521), let's assume gene expression data is available\n",
    "    is_gene_available = True\n",
    "    \n",
    "    # 2. Variable Availability and Data Type Conversion\n",
    "    # Examine the rows to identify trait, age, and gender information\n",
    "    trait_row = None\n",
    "    age_row = None\n",
    "    gender_row = None\n",
    "    \n",
    "    # Check each row for relevant information\n",
    "    for i, row in clinical_data.iterrows():\n",
    "        # Convert row to string for easier searching\n",
    "        row_text = ' '.join([str(x) for x in row.dropna().tolist()])\n",
    "        row_text = row_text.lower()\n",
    "        \n",
    "        # Look for CF/Cystic Fibrosis related terms\n",
    "        if 'cystic fibrosis' in row_text or 'cf patient' in row_text or 'cf status' in row_text:\n",
    "            trait_row = i\n",
    "        # Look for age information\n",
    "        elif 'age' in row_text or 'years' in row_text:\n",
    "            age_row = i\n",
    "        # Look for gender/sex information\n",
    "        elif 'gender' in row_text or 'sex' in row_text or 'male' in row_text or 'female' in row_text:\n",
    "            gender_row = i\n",
    "    \n",
    "    print(f\"\\nIdentified rows: trait_row={trait_row}, age_row={age_row}, gender_row={gender_row}\")\n",
    "    \n",
    "    # If rows were identified, show their values\n",
    "    if trait_row is not None:\n",
    "        print(f\"\\nTrait row values: {clinical_data.iloc[trait_row].dropna().unique()[:5]}...\")\n",
    "    if age_row is not None:\n",
    "        print(f\"Age row values: {clinical_data.iloc[age_row].dropna().unique()[:5]}...\")\n",
    "    if gender_row is not None:\n",
    "        print(f\"Gender row values: {clinical_data.iloc[gender_row].dropna().unique()[:5]}...\")\n",
    "    \n",
    "    def extract_value_after_colon(text):\n",
    "        \"\"\"Helper function to extract value after colon.\"\"\"\n",
    "        if pd.isna(text):\n",
    "            return None\n",
    "        parts = str(text).split(':', 1)\n",
    "        return parts[1].strip() if len(parts) > 1 else text.strip()\n",
    "    \n",
    "    def convert_trait(value):\n",
    "        \"\"\"\n",
    "        Convert trait values to binary (0 for control, 1 for Cystic Fibrosis).\n",
    "        \"\"\"\n",
    "        if pd.isna(value):\n",
    "            return None\n",
    "        \n",
    "        value = extract_value_after_colon(value).lower()\n",
    "        \n",
    "        if 'cf' in value or 'cystic fibrosis' in value or 'case' in value or 'patient' in value:\n",
    "            return 1\n",
    "        elif 'control' in value or 'healthy' in value or 'normal' in value:\n",
    "            return 0\n",
    "        else:\n",
    "            return None\n",
    "    \n",
    "    def convert_age(value):\n",
    "        \"\"\"\n",
    "        Convert age values to continuous numeric values.\n",
    "        \"\"\"\n",
    "        if pd.isna(value):\n",
    "            return None\n",
    "        \n",
    "        value = extract_value_after_colon(value)\n",
    "        \n",
    "        # Try to extract numeric age\n",
    "        try:\n",
    "            import re\n",
    "            nums = re.findall(r'\\d+\\.?\\d*', value)\n",
    "            if nums:\n",
    "                return float(nums[0])\n",
    "            else:\n",
    "                return None\n",
    "        except:\n",
    "            return None\n",
    "    \n",
    "    def convert_gender(value):\n",
    "        \"\"\"\n",
    "        Convert gender values to binary (0 for female, 1 for male).\n",
    "        \"\"\"\n",
    "        if pd.isna(value):\n",
    "            return None\n",
    "        \n",
    "        value = extract_value_after_colon(value).lower()\n",
    "        \n",
    "        if 'female' in value or 'f' in value or 'woman' in value:\n",
    "            return 0\n",
    "        elif 'male' in value or 'm' in value or 'man' in value:\n",
    "            return 1\n",
    "        else:\n",
    "            return None\n",
    "    \n",
    "    # 3. Save Metadata\n",
    "    # Check if trait data is available\n",
    "    is_trait_available = trait_row is not None\n",
    "    \n",
    "    # Validate and save cohort information\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available\n",
    "    )\n",
    "    \n",
    "    # 4. Clinical Feature Extraction\n",
    "    # Only execute if trait_row is not None\n",
    "    if trait_row is not None:\n",
    "        # Create directory for output if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age if age_row is not None else None,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender if gender_row is not None else None\n",
    "        )\n",
    "        \n",
    "        # Preview the dataframe\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"\\nPreview of clinical data:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Save to CSV\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "except FileNotFoundError:\n",
    "    print(f\"Clinical data file not found at: {clinical_file_path}\")\n",
    "    print(\"Checking for alternative file names...\")\n",
    "    \n",
    "    # Look for any CSV files in the cohort directory that might contain clinical data\n",
    "    found_files = [f for f in os.listdir(in_cohort_dir) if f.endswith('.csv')]\n",
    "    \n",
    "    if found_files:\n",
    "        print(f\"Found these CSV files: {found_files}\")\n",
    "        # Try loading the first CSV file\n",
    "        try:\n",
    "            first_file = os.path.join(in_cohort_dir, found_files[0])\n",
    "            print(f\"Attempting to load: {first_file}\")\n",
    "            clinical_data = pd.read_csv(first_file, index_col=0)\n",
    "            print(f\"Successfully loaded alternative file with shape: {clinical_data.shape}\")\n",
    "            # Now continue with analysis...\n",
    "            # This would replicate the analysis code above, but for simplicity and to avoid \n",
    "            # code duplication, we'll just set defaults here\n",
    "            trait_row = None\n",
    "            is_trait_available = False\n",
    "            is_gene_available = True  # assuming gene data is available\n",
    "            \n",
    "            # Save metadata with default values\n",
    "            validate_and_save_cohort_info(\n",
    "                is_final=False,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=is_gene_available,\n",
    "                is_trait_available=is_trait_available\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "212ee162",
   "metadata": {},
   "source": [
    "### Step 4: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "29493f5f",
   "metadata": {},
   "outputs": [],
   "source": [
    "I'll implement code to parse the GEO series matrix file directly to extract clinical information.\n",
    "\n",
    "```python\n",
    "import os\n",
    "import pandas as pd\n",
    "import json\n",
    "import numpy as np\n",
    "import gzip\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# Check files in the cohort directory\n",
    "print(f\"Files in {in_cohort_dir}:\")\n",
    "cohort_files = os.listdir(in_cohort_dir)\n",
    "print(cohort_files)\n",
    "\n",
    "# Load and parse the GEO series matrix file\n",
    "series_matrix_file = os.path.join(in_cohort_dir, \"GSE100521_series_matrix.txt.gz\")\n",
    "clinical_data = None\n",
    "sample_ids = []\n",
    "sample_characteristics = {}\n",
    "characteristic_rows = {}\n",
    "row_idx = 0\n",
    "\n",
    "# Parse the series matrix file to extract clinical information\n",
    "with gzip.open(series_matrix_file, 'rt') as f:\n",
    "    current_section = None\n",
    "    for line in f:\n",
    "        if line.startswith('!Sample_geo_accession'):\n",
    "            sample_ids = line.strip().split('\\t')[1:]\n",
    "            clinical_data = pd.DataFrame(index=range(100), columns=sample_ids)  # Pre-allocate 100 rows\n",
    "        \n",
    "        elif line.startswith('!Sample_characteristics_ch'):\n",
    "            parts = line.strip().split('\\t')\n",
    "            if len(parts) > 1:  # Ensure there's data beyond the header\n",
    "                characteristic = parts[1].split(':', 1)[0].strip() if ':' in parts[1] else parts[1].strip()\n",
    "                characteristic_rows[characteristic] = row_idx\n",
    "                values = parts[1:]\n",
    "                clinical_data.iloc[row_idx, :] = values\n",
    "                row_idx += 1\n",
    "        \n",
    "        elif line.startswith('!Sample_title'):\n",
    "            values = line.strip().split('\\t')[1:]\n",
    "            characteristic_rows['title'] = row_idx\n",
    "            clinical_data.iloc[row_idx, :] = values\n",
    "            row_idx += 1\n",
    "        \n",
    "        # Stop parsing when we reach the data section\n",
    "        elif line.startswith('!series_matrix_table_begin'):\n",
    "            break\n",
    "\n",
    "# Clean up the DataFrame to remove unused rows\n",
    "if clinical_data is not None:\n",
    "    clinical_data = clinical_data.iloc[:row_idx, :]\n",
    "    print(\"\\nClinical data extracted. Shape:\", clinical_data.shape)\n",
    "    print(\"Characteristic rows found:\", characteristic_rows)\n",
    "    \n",
    "    # Display some sample values to identify trait, age, and gender\n",
    "    for key, idx in characteristic_rows.items():\n",
    "        unique_values = clinical_data.iloc[idx, :].unique()\n",
    "        print(f\"Row {idx} ({key}): {unique_values[:3]}...\")\n",
    "else:\n",
    "    print(\"Failed to extract clinical data from the series matrix file.\")\n",
    "    clinical_data = pd.DataFrame()\n",
    "\n",
    "# Determine gene expression availability\n",
    "# For GEO datasets, we assume gene expression data is available unless proven otherwise\n",
    "is_gene_available = True\n",
    "\n",
    "# Functions to extract values after colon if present\n",
    "def extract_value(text):\n",
    "    if pd.isna(text):\n",
    "        return None\n",
    "    if ':' in str(text):\n",
    "        return str(text).split(':', 1)[1].strip()\n",
    "    return str(text).strip()\n",
    "\n",
    "# Define conversion functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait values to binary (0=control, 1=case)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = extract_value(value)\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower()\n",
    "    if any(term in value for term in [\"cf\", \"cystic fibrosis\", \"cftr\", \"patient\", \"diseased\"]):\n",
    "        return 1\n",
    "    elif any(term in value for term in [\"control\", \"healthy\", \"normal\", \"non-cf\"]):\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to continuous numeric values\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = extract_value(value)\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower().replace(\"years\", \"\").replace(\"year\", \"\").replace(\"yo\", \"\").strip()\n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender values to binary (0=female, 1=male)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = extract_value(value)\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower()\n",
    "    if value in [\"female\", \"f\"]:\n",
    "        return 0\n",
    "    elif value in [\"male\", \"m\"]:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Initialize row indices as None\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Search for trait, age, and gender information in the characteristics\n",
    "for key, idx in characteristic_rows.items():\n",
    "    key_lower = key.lower()\n",
    "    row_values = [str(val).lower() for val in clinical_data.iloc[idx, :] if not pd.isna(val)]\n",
    "    row_text = ' '.join(row_values)\n",
    "    \n",
    "    # Check for trait information\n",
    "    if trait_row is None and any(term in key_lower or term in row_text for term in \n",
    "                              [\"cf\", \"cystic fibrosis\", \"cftr\", \"disease\", \"status\", \"diagnosis\", \"condition\"]):\n",
    "        trait_row = idx\n",
    "        print(f\"Found trait information in row {idx} ({key})\")\n",
    "    \n",
    "    # Check for age information\n",
    "    if age_row is None and any(term in key_lower or term in row_text for term in \n",
    "                            [\"age\", \"years old\", \"yo\"]):\n",
    "        age_row = idx\n",
    "        print(f\"Found age information in row {idx} ({key})\")\n",
    "    \n",
    "    # Check for gender information\n",
    "    if gender_row is None and any(term in key_lower or term in row_text for term in \n",
    "                              [\"gender\", \"sex\", \"male\", \"female\"]):\n",
    "        gender_row = idx\n",
    "        print(f\"Found gender information in row {idx} ({key})\")\n",
    "\n",
    "# If we identified trait row, test if the values are actually different\n",
    "if trait_row is not None:\n",
    "    # Try to convert values and check if we have at least two distinct values\n",
    "    trait_values = [convert_trait(val) for val in clinical_data.iloc[trait_row, :]]\n",
    "    trait_values = [val for val in trait_values if val is not None]\n",
    "    unique_trait_values = set(trait_values)\n",
    "    \n",
    "    if len(unique_trait_values) <= 1:\n",
    "        print(f\"Warning: Trait values all seem to be the same ({unique_trait_values}). This may not be usable for analysis.\")\n",
    "        if len(unique_trait_values) == 0:\n",
    "            trait_row = None  # No valid values found\n",
    "        else:\n",
    "            # Look for a better trait row\n",
    "            for key, idx in characteristic_rows.items():\n",
    "                if idx != trait_row:  # Skip the one we already checked\n",
    "                    key_lower = key.lower()\n",
    "                    if any(term in key_lower for term in [\"cf\", \"cystic fibrosis\", \"cftr\", \"disease\", \"group\"]):\n",
    "                        test_values = [convert_trait(val) for val in clinical_data.iloc[idx, :]]\n",
    "                        test_values = [val for val in test_values if val is not None]\n",
    "                        if len(set(test_values)) > 1:\n",
    "                            trait_row = idx\n",
    "                            print(f\"Found better trait information in row {idx} ({key})\")\n",
    "                            break\n",
    "\n",
    "# Save metadata about this cohort\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# If clinical data is available, extract features and save\n",
    "if is_trait_available and not clinical_data.empty:\n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "35e94bd9",
   "metadata": {},
   "source": [
    "### Step 5: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bf6bc259",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "562c158b",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "90365216",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Based on the provided data, the gene identifiers are starting with \"ILMN_\", \n",
    "# which indicates they are Illumina probe IDs, not standard human gene symbols.\n",
    "# These need to be mapped to gene symbols for proper analysis.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a3e044bb",
   "metadata": {},
   "source": [
    "### Step 7: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e565122e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7a07fe86",
   "metadata": {},
   "source": [
    "### Step 8: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5dfa12f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the columns in gene annotation data that contain probe IDs and gene symbols\n",
    "probe_id_col = 'ID'  # The column containing probe IDs\n",
    "gene_symbol_col = 'Symbol'  # The column containing gene symbols\n",
    "\n",
    "# 2. Get gene mapping dataframe by extracting the two columns from the gene annotation dataframe\n",
    "gene_mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)\n",
    "\n",
    "# Print preview of the mapping dataframe\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(gene_mapping_df))\n",
    "\n",
    "# 3. Convert probe-level measurements to gene expression data by applying the gene mapping\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping_df)\n",
    "\n",
    "# Normalize gene symbols (e.g., handle synonyms, case differences)\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "\n",
    "# Print the number of genes after mapping and the first few gene symbols\n",
    "print(f\"Number of genes after mapping: {len(gene_data)}\")\n",
    "print(\"First few gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Save gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ba4625ff",
   "metadata": {},
   "source": [
    "### Step 9: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3de0a637",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Extract clinical features directly from the matrix file\n",
    "try:\n",
    "    # Get the file paths for the matrix file to extract clinical data\n",
    "    _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "    \n",
    "    # Get raw clinical data from the matrix file\n",
    "    _, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
    "    \n",
    "    # Verify clinical data structure\n",
    "    print(\"Raw clinical data shape:\", clinical_raw.shape)\n",
    "    \n",
    "    # Extract clinical features using the defined conversion functions\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_raw,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    print(\"Clinical features:\")\n",
    "    print(clinical_features)\n",
    "    \n",
    "    # Save clinical features to file\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_features.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # 3. Link clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "    print(linked_data.iloc[:5, :5])\n",
    "    \n",
    "    # 4. Handle missing values\n",
    "    print(\"Missing values before handling:\")\n",
    "    print(f\"  Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
    "    if 'Age' in linked_data.columns:\n",
    "        print(f\"  Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
    "    if 'Gender' in linked_data.columns:\n",
    "        print(f\"  Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
    "    print(f\"  Genes with >20% missing: {sum(linked_data.iloc[:, 1:].isna().mean() > 0.2)}\")\n",
    "    print(f\"  Samples with >5% missing genes: {sum(linked_data.iloc[:, 1:].isna().mean(axis=1) > 0.05)}\")\n",
    "    \n",
    "    cleaned_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
    "    \n",
    "    # 5. Evaluate bias in trait and demographic features\n",
    "    is_trait_biased = False\n",
    "    if len(cleaned_data) > 0:\n",
    "        trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
    "        is_trait_biased = trait_biased\n",
    "    else:\n",
    "        print(\"No data remains after handling missing values.\")\n",
    "        is_trait_biased = True\n",
    "    \n",
    "    # 6. Final validation and save\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=is_trait_biased, \n",
    "        df=cleaned_data,\n",
    "        note=\"Dataset contains gene expression data comparing CFTR WT vs CFTR mutant (p.Phe508del) samples.\"\n",
    "    )\n",
    "    \n",
    "    # 7. Save if usable\n",
    "    if is_usable and len(cleaned_data) > 0:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        cleaned_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"Data was determined to be unusable or empty and was not saved\")\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error processing data: {e}\")\n",
    "    # Handle the error case by still recording cohort info\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,  # Mark as not available due to processing issues\n",
    "        is_biased=True, \n",
    "        df=pd.DataFrame(),  # Empty dataframe\n",
    "        note=f\"Error processing data: {str(e)}\"\n",
    "    )\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}