File size: 23,534 Bytes
32677ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "d593c7c0",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Cystic_Fibrosis\"\n",
"cohort = \"GSE76347\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Cystic_Fibrosis\"\n",
"in_cohort_dir = \"../../input/GEO/Cystic_Fibrosis/GSE76347\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Cystic_Fibrosis/GSE76347.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Cystic_Fibrosis/gene_data/GSE76347.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Cystic_Fibrosis/clinical_data/GSE76347.csv\"\n",
"json_path = \"../../output/preprocess/Cystic_Fibrosis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "47df863c",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4301e45",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "1c4345ba",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "53d0032a",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import re\n",
"import os\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains nasal epithelial cell samples analyzed for microarray\n",
"# analysis, which suggests gene expression data, not just miRNA or methylation data.\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# For trait (Cystic Fibrosis):\n",
"# From sample characteristics, all patients have CF (row 0: 'disease state: CF')\n",
"# Since everyone has CF, we can't do a case-control study within this dataset alone\n",
"# But we can still use this dataset for gene expression analysis related to CF\n",
"trait_row = 0 # Everyone has CF, so this is a constant feature but we still record it\n",
"\n",
"# For age:\n",
"# No age information is available in the sample characteristics\n",
"age_row = None # Age data not available\n",
"\n",
"# For gender:\n",
"# No gender information is available in the sample characteristics\n",
"gender_row = None # Gender data not available\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait data to binary format (1 for CF, 0 for non-CF).\"\"\"\n",
" if value is None:\n",
" return None\n",
" # Extract the value after colon if present\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" # If the value indicates CF, return 1 (all patients in this study have CF)\n",
" if value.lower() == \"cf\":\n",
" return 1\n",
" return None # For any other value, return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age data to continuous format.\"\"\"\n",
" # This function is included for completeness but won't be used since age_row is None\n",
" if value is None:\n",
" return None\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" try:\n",
" return float(value)\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender data to binary format (0 for female, 1 for male).\"\"\"\n",
" # This function is included for completeness but won't be used since gender_row is None\n",
" if value is None:\n",
" return None\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" if value.lower() in [\"female\", \"f\"]:\n",
" return 0\n",
" elif value.lower() in [\"male\", \"m\"]:\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability (all have CF, so trait data is available)\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Conduct initial filtering on dataset usability\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Create a properly structured clinical data DataFrame\n",
"# We need to create a DataFrame where each row corresponds to a clinical feature\n",
"# and each column corresponds to a sample\n",
"\n",
"# First, get the sample characteristics dictionary\n",
"sample_characteristics_dict = {\n",
" 0: ['disease state: CF'], \n",
" 1: ['individual: patient # 001', 'individual: patient # 002', 'individual: patient # 004', 'individual: patient # 006', \n",
" 'individual: patient # 009', 'individual: patient # 013', 'individual: patient # 015', 'individual: patient # 017', \n",
" 'individual: patient # 019', 'individual: patient # 020', 'individual: patient # 021', 'individual: patient # 024', \n",
" 'individual: patient # 025', 'individual: patient # 028', 'individual: patient # 030', 'individual: patient # 031', \n",
" 'individual: patient # 003', 'individual: patient # 005', 'individual: patient # 010', 'individual: patient # 014', \n",
" 'individual: patient # 018', 'individual: patient # 022', 'individual: patient # 027'],\n",
" 2: ['treatment: digitoxin', 'treatment: placebo'],\n",
" 3: ['dosage: 50 micro gram/daily', 'dosage: 100 micro gram/daily'],\n",
" 4: ['time: post treatment', 'time: pre treatment'],\n",
" 5: ['cell type: nasal epithelial cells']\n",
"}\n",
"\n",
"# Create a DataFrame that represents the structure expected by geo_select_clinical_features\n",
"# The function expects rows as features, not directly from the sample characteristics dict\n",
"clinical_data = pd.DataFrame()\n",
"for row_idx, values in sample_characteristics_dict.items():\n",
" clinical_data.loc[row_idx, 0] = values[0] if values else None\n",
"\n",
"# Since trait_row is not None, we extract the clinical features\n",
"if trait_row is not None:\n",
" # Extract clinical features using the library function\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the data\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save the clinical data\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "85c6479a",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e4c692cf",
"metadata": {},
"outputs": [],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "49e2380f",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b36ffa6e",
"metadata": {},
"outputs": [],
"source": [
"# Examine the identifiers in the first few rows of the gene expression data\n",
"# The IDs like '2315100' appear to be numeric identifiers that are not standard gene symbols\n",
"# These are likely probe IDs from a microarray platform that need to be mapped to gene symbols\n",
"\n",
"# Standard human gene symbols follow patterns like BRCA1, TP53, etc.\n",
"# The numeric identifiers seen in this dataset (2315100, 2315106, etc.) are not recognizable gene symbols\n",
"\n",
"# Since these are numeric identifiers rather than human gene symbols, \n",
"# they will require mapping to standard gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "fe84f699",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "154aad2b",
"metadata": {},
"outputs": [],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "7b5e1f51",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "579c2004",
"metadata": {},
"outputs": [],
"source": [
"# 1. Identify columns for mapping\n",
"# From the previous output, we can see:\n",
"# - 'ID' column contains the probe identifiers (matching the format in gene_data index)\n",
"# - 'gene_assignment' column contains information about gene symbols\n",
"\n",
"# Create a gene mapping dataframe directly using the get_gene_mapping function\n",
"# The 'ID' column contains the probe identifiers and the 'gene_assignment' column contains gene symbol information\n",
"mapping_df = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n",
"\n",
"# Preview the mapping dataframe\n",
"print(\"Gene mapping preview:\")\n",
"print(mapping_df.head())\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"# Use the apply_gene_mapping function from the library\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Print information about the resulting gene expression data\n",
"print(f\"\\nGene expression data shape after mapping: {gene_data.shape}\")\n",
"print(\"\\nFirst few gene symbols:\")\n",
"print(gene_data.index[:5])\n",
"\n",
"# Normalize gene symbols to ensure consistency\n",
"gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"\\nGene expression data shape after normalization: {gene_data.shape}\")\n",
"print(\"\\nFirst few normalized gene symbols:\")\n",
"print(gene_data.index[:5])\n",
"\n",
"# Create directory if it doesn't exist\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"\n",
"# Save the gene expression data\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "928d905e",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "031eb6a7",
"metadata": {},
"outputs": [],
"source": [
"# 1. For step 1, we'll skip normalizing gene symbols again since it was already done in the previous step\n",
"# and the normalized gene data is already saved\n",
"\n",
"# 2. Load the saved clinical data instead of reprocessing it\n",
"clinical_data_path = out_clinical_data_file\n",
"if os.path.exists(clinical_data_path):\n",
" selected_clinical_df = pd.read_csv(clinical_data_path)\n",
" print(f\"Loaded clinical data from {clinical_data_path}\")\n",
" print(\"Clinical data preview:\")\n",
" print(preview_df(selected_clinical_df))\n",
"else:\n",
" # If the file doesn't exist for some reason, extract clinical features as a fallback\n",
" soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
" background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_data, \n",
" trait=trait, # Use the trait variable from setup\n",
" trait_row=trait_row, \n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" print(\"Clinical data preview:\")\n",
" print(preview_df(selected_clinical_df))\n",
"\n",
"# Load the normalized gene data \n",
"gene_data_path = out_gene_data_file\n",
"if os.path.exists(gene_data_path):\n",
" normalized_gene_data = pd.read_csv(gene_data_path, index_col=0)\n",
" print(f\"Loaded normalized gene data from {gene_data_path}\")\n",
" print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
"else:\n",
" print(\"Error: Normalized gene data file not found\")\n",
" \n",
"# 3. Link the clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape (before handling missing values): {linked_data.shape}\")\n",
"\n",
"# 4. Handle missing values in the linked data\n",
"# Determine the actual column name for the trait\n",
"trait_column = '0' # Based on the clinical data preview\n",
"linked_data = handle_missing_values(linked_data, trait_column)\n",
"print(f\"Data after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 5. Determine whether the trait and demographic features are biased\n",
"# Check if trait is biased\n",
"if len(linked_data[trait_column].unique()) == 2: # binary trait\n",
" is_trait_biased = judge_binary_variable_biased(linked_data, trait_column)\n",
"else: # continuous trait\n",
" is_trait_biased = judge_continuous_variable_biased(linked_data, trait_column)\n",
"\n",
"# We don't need to do any further processing for demographic variables since none exist in this dataset\n",
"unbiased_linked_data = linked_data # No biased features to remove\n",
"\n",
"# 6. Conduct final quality validation and save cohort information\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=f\"Dataset contains gene expression data from nasal epithelial cells of cystic fibrosis patients in a study examining the effects of digitoxin on airway inflammation.\"\n",
")\n",
"\n",
"# 7. If the linked data is usable, save it\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Data was determined to be unusable and was not saved\")\n"
]
},
{
"cell_type": "markdown",
"id": "fcdefea6",
"metadata": {},
"source": [
"### Step 8: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d66ffc27",
"metadata": {},
"outputs": [],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
"print(\"First few genes with their expression values after normalization:\")\n",
"print(normalized_gene_data.head())\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Extract clinical features using the functions defined in step 2\n",
"# First, let's load the clinical data again to ensure we have the latest version\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"# Extract clinical features using melanoma vs normal tissue as the binary trait\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_data, \n",
" trait=\"Melanoma\", \n",
" trait_row=trait_row, \n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"# Save the clinical data\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# 3. Link the clinical and genetic data\n",
"# Transpose normalized gene data for linking\n",
"gene_data_t = normalized_gene_data.T\n",
"\n",
"# Link the clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape (before handling missing values): {linked_data.shape}\")\n",
"\n",
"# 4. Handle missing values in the linked data\n",
"linked_data = handle_missing_values(linked_data, \"Melanoma\")\n",
"print(f\"Data after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 5. Determine whether the trait and demographic features are biased\n",
"is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, \"Melanoma\")\n",
"\n",
"# 6. Conduct final quality validation and save cohort information\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=\"Dataset contains gene expression data comparing melanoma (primary and metastatic) with normal tissue/nevi.\"\n",
")\n",
"\n",
"# 7. If the linked data is usable, save it\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Data was determined to be unusable and was not saved\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|