File size: 23,534 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d593c7c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Cystic_Fibrosis\"\n",
    "cohort = \"GSE76347\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Cystic_Fibrosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Cystic_Fibrosis/GSE76347\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Cystic_Fibrosis/GSE76347.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Cystic_Fibrosis/gene_data/GSE76347.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Cystic_Fibrosis/clinical_data/GSE76347.csv\"\n",
    "json_path = \"../../output/preprocess/Cystic_Fibrosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "47df863c",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c4301e45",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1c4345ba",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "53d0032a",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import re\n",
    "import os\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains nasal epithelial cell samples analyzed for microarray\n",
    "# analysis, which suggests gene expression data, not just miRNA or methylation data.\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (Cystic Fibrosis):\n",
    "# From sample characteristics, all patients have CF (row 0: 'disease state: CF')\n",
    "# Since everyone has CF, we can't do a case-control study within this dataset alone\n",
    "# But we can still use this dataset for gene expression analysis related to CF\n",
    "trait_row = 0  # Everyone has CF, so this is a constant feature but we still record it\n",
    "\n",
    "# For age:\n",
    "# No age information is available in the sample characteristics\n",
    "age_row = None  # Age data not available\n",
    "\n",
    "# For gender:\n",
    "# No gender information is available in the sample characteristics\n",
    "gender_row = None  # Gender data not available\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait data to binary format (1 for CF, 0 for non-CF).\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    # Extract the value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    # If the value indicates CF, return 1 (all patients in this study have CF)\n",
    "    if value.lower() == \"cf\":\n",
    "        return 1\n",
    "    return None  # For any other value, return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age data to continuous format.\"\"\"\n",
    "    # This function is included for completeness but won't be used since age_row is None\n",
    "    if value is None:\n",
    "        return None\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender data to binary format (0 for female, 1 for male).\"\"\"\n",
    "    # This function is included for completeness but won't be used since gender_row is None\n",
    "    if value is None:\n",
    "        return None\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    if value.lower() in [\"female\", \"f\"]:\n",
    "        return 0\n",
    "    elif value.lower() in [\"male\", \"m\"]:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability (all have CF, so trait data is available)\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Conduct initial filtering on dataset usability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Create a properly structured clinical data DataFrame\n",
    "# We need to create a DataFrame where each row corresponds to a clinical feature\n",
    "# and each column corresponds to a sample\n",
    "\n",
    "# First, get the sample characteristics dictionary\n",
    "sample_characteristics_dict = {\n",
    "    0: ['disease state: CF'], \n",
    "    1: ['individual: patient # 001', 'individual: patient # 002', 'individual: patient # 004', 'individual: patient # 006', \n",
    "        'individual: patient # 009', 'individual: patient # 013', 'individual: patient # 015', 'individual: patient # 017', \n",
    "        'individual: patient # 019', 'individual: patient # 020', 'individual: patient # 021', 'individual: patient # 024', \n",
    "        'individual: patient # 025', 'individual: patient # 028', 'individual: patient # 030', 'individual: patient # 031', \n",
    "        'individual: patient # 003', 'individual: patient # 005', 'individual: patient # 010', 'individual: patient # 014', \n",
    "        'individual: patient # 018', 'individual: patient # 022', 'individual: patient # 027'],\n",
    "    2: ['treatment: digitoxin', 'treatment: placebo'],\n",
    "    3: ['dosage: 50 micro gram/daily', 'dosage: 100 micro gram/daily'],\n",
    "    4: ['time: post treatment', 'time: pre treatment'],\n",
    "    5: ['cell type: nasal epithelial cells']\n",
    "}\n",
    "\n",
    "# Create a DataFrame that represents the structure expected by geo_select_clinical_features\n",
    "# The function expects rows as features, not directly from the sample characteristics dict\n",
    "clinical_data = pd.DataFrame()\n",
    "for row_idx, values in sample_characteristics_dict.items():\n",
    "    clinical_data.loc[row_idx, 0] = values[0] if values else None\n",
    "\n",
    "# Since trait_row is not None, we extract the clinical features\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features using the library function\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "85c6479a",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e4c692cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "49e2380f",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b36ffa6e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Examine the identifiers in the first few rows of the gene expression data\n",
    "# The IDs like '2315100' appear to be numeric identifiers that are not standard gene symbols\n",
    "# These are likely probe IDs from a microarray platform that need to be mapped to gene symbols\n",
    "\n",
    "# Standard human gene symbols follow patterns like BRCA1, TP53, etc.\n",
    "# The numeric identifiers seen in this dataset (2315100, 2315106, etc.) are not recognizable gene symbols\n",
    "\n",
    "# Since these are numeric identifiers rather than human gene symbols, \n",
    "# they will require mapping to standard gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fe84f699",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "154aad2b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7b5e1f51",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "579c2004",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify columns for mapping\n",
    "# From the previous output, we can see:\n",
    "# - 'ID' column contains the probe identifiers (matching the format in gene_data index)\n",
    "# - 'gene_assignment' column contains information about gene symbols\n",
    "\n",
    "# Create a gene mapping dataframe directly using the get_gene_mapping function\n",
    "# The 'ID' column contains the probe identifiers and the 'gene_assignment' column contains gene symbol information\n",
    "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n",
    "\n",
    "# Preview the mapping dataframe\n",
    "print(\"Gene mapping preview:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "# Use the apply_gene_mapping function from the library\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Print information about the resulting gene expression data\n",
    "print(f\"\\nGene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(\"\\nFirst few gene symbols:\")\n",
    "print(gene_data.index[:5])\n",
    "\n",
    "# Normalize gene symbols to ensure consistency\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"\\nGene expression data shape after normalization: {gene_data.shape}\")\n",
    "print(\"\\nFirst few normalized gene symbols:\")\n",
    "print(gene_data.index[:5])\n",
    "\n",
    "# Create directory if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "\n",
    "# Save the gene expression data\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "928d905e",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "031eb6a7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. For step 1, we'll skip normalizing gene symbols again since it was already done in the previous step\n",
    "# and the normalized gene data is already saved\n",
    "\n",
    "# 2. Load the saved clinical data instead of reprocessing it\n",
    "clinical_data_path = out_clinical_data_file\n",
    "if os.path.exists(clinical_data_path):\n",
    "    selected_clinical_df = pd.read_csv(clinical_data_path)\n",
    "    print(f\"Loaded clinical data from {clinical_data_path}\")\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "else:\n",
    "    # If the file doesn't exist for some reason, extract clinical features as a fallback\n",
    "    soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "    background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_data, \n",
    "        trait=trait,  # Use the trait variable from setup\n",
    "        trait_row=trait_row, \n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "\n",
    "# Load the normalized gene data \n",
    "gene_data_path = out_gene_data_file\n",
    "if os.path.exists(gene_data_path):\n",
    "    normalized_gene_data = pd.read_csv(gene_data_path, index_col=0)\n",
    "    print(f\"Loaded normalized gene data from {gene_data_path}\")\n",
    "    print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "else:\n",
    "    print(\"Error: Normalized gene data file not found\")\n",
    "    \n",
    "# 3. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape (before handling missing values): {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "# Determine the actual column name for the trait\n",
    "trait_column = '0'  # Based on the clinical data preview\n",
    "linked_data = handle_missing_values(linked_data, trait_column)\n",
    "print(f\"Data after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Determine whether the trait and demographic features are biased\n",
    "# Check if trait is biased\n",
    "if len(linked_data[trait_column].unique()) == 2:  # binary trait\n",
    "    is_trait_biased = judge_binary_variable_biased(linked_data, trait_column)\n",
    "else:  # continuous trait\n",
    "    is_trait_biased = judge_continuous_variable_biased(linked_data, trait_column)\n",
    "\n",
    "# We don't need to do any further processing for demographic variables since none exist in this dataset\n",
    "unbiased_linked_data = linked_data  # No biased features to remove\n",
    "\n",
    "# 6. Conduct final quality validation and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=f\"Dataset contains gene expression data from nasal epithelial cells of cystic fibrosis patients in a study examining the effects of digitoxin on airway inflammation.\"\n",
    ")\n",
    "\n",
    "# 7. If the linked data is usable, save it\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fcdefea6",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d66ffc27",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Extract clinical features using the functions defined in step 2\n",
    "# First, let's load the clinical data again to ensure we have the latest version\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Extract clinical features using melanoma vs normal tissue as the binary trait\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_data, \n",
    "    trait=\"Melanoma\", \n",
    "    trait_row=trait_row, \n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "\n",
    "# 3. Link the clinical and genetic data\n",
    "# Transpose normalized gene data for linking\n",
    "gene_data_t = normalized_gene_data.T\n",
    "\n",
    "# Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape (before handling missing values): {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, \"Melanoma\")\n",
    "print(f\"Data after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Determine whether the trait and demographic features are biased\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, \"Melanoma\")\n",
    "\n",
    "# 6. Conduct final quality validation and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression data comparing melanoma (primary and metastatic) with normal tissue/nevi.\"\n",
    ")\n",
    "\n",
    "# 7. If the linked data is usable, save it\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}