File size: 40,508 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "0e53b6c8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:39:46.907519Z",
     "iopub.status.busy": "2025-03-25T08:39:46.907284Z",
     "iopub.status.idle": "2025-03-25T08:39:47.072733Z",
     "shell.execute_reply": "2025-03-25T08:39:47.072292Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Duchenne_Muscular_Dystrophy\"\n",
    "cohort = \"GSE79263\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Duchenne_Muscular_Dystrophy\"\n",
    "in_cohort_dir = \"../../input/GEO/Duchenne_Muscular_Dystrophy/GSE79263\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE79263.csv\"\n",
    "json_path = \"../../output/preprocess/Duchenne_Muscular_Dystrophy/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "994963be",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b762f198",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:39:47.074176Z",
     "iopub.status.busy": "2025-03-25T08:39:47.074027Z",
     "iopub.status.idle": "2025-03-25T08:39:47.353416Z",
     "shell.execute_reply": "2025-03-25T08:39:47.352788Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Analysis of gene expression in hTERT/cdk4 immortalized human myoblasts compared to their primary populations in both undifferentiatied (myoblast) and differentiated (myotube) states\"\n",
      "!Series_summary\t\"hTERT/cdk4 immortalized myogenic human cell lines represent an important tool for skeletal muscle research, being used as therapeutically-pertinent models of various neuromuscular disorders and in numerous fundamental studies of muscle cell function. However, the cell cycle is linked to other cellular processes such as integrin regulation, the PI3K/Akt pathway, and microtubule stability, raising the question as to whether transgenic modification of the cell cycle results in secondary effects that could undermine the validity of these cell models. Here we subjected healthy and disease lines to intensive transcriptomic analysis, comparing immortalized lines with their parent primary populations in both differentiated and undifferentiated states, and testing their myogenic character by comparison with non-myogenic (CD56-negative) cells. We found that immortalization has no measurable effect on the myogenic cascade or on any other cellular processes, and that it was protective against the systems level effects of senescence that are observed at higher division counts of primary cells.\"\n",
      "!Series_overall_design\t\"This dataset includes gene expression profiles for 94 samples comprising primary myoblasts and their corresponding immortalized clones in both differentiated and undifferentiated states (average of 4 cell culture replicates each) from 5 human subjects (2 healthy and 3 Duchenne muscular dystropy - DMD), together with primary populations of non-myogenic (CD56-ve) cells from the muscles of 8 other human subjects. Total RNA was extracted from, myoblasts, myotubes (after 9 days of differentiation), or CD56-ve cells by dissolving cell pellets in TRIzol then using PureLink RNA Mini Kit.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell type: non-myogenic CD56-negative', 'differentiation state: Myoblast', 'differentiation state: Myotube'], 1: ['differentiation state: NA', 'clonal state: Clone', 'clonal state: Primary'], 2: ['clonal state: NA', 'disease state: healthy', 'disease state: Duchenne muscular dystrophy', 'disease state: Healthy'], 3: ['disease state: NA', nan], 4: ['age: 80y', 'age: 78y', 'age: unknown', 'age: 79y', 'age: 19y', 'age: 17y', 'age: 15y', 'age: 73y', nan]}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3e710f57",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "1111ff24",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:39:47.354879Z",
     "iopub.status.busy": "2025-03-25T08:39:47.354760Z",
     "iopub.status.idle": "2025-03-25T08:39:47.370452Z",
     "shell.execute_reply": "2025-03-25T08:39:47.370087Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical Data Preview: {'GSM2090086': [nan, 80.0], 'GSM2090087': [nan, 78.0], 'GSM2090088': [nan, nan], 'GSM2090089': [nan, 79.0], 'GSM2090090': [nan, 19.0], 'GSM2090091': [nan, 17.0], 'GSM2090092': [nan, 15.0], 'GSM2090093': [nan, 73.0], 'GSM2090094': [0.0, nan], 'GSM2090095': [0.0, nan], 'GSM2090096': [0.0, nan], 'GSM2090097': [0.0, nan], 'GSM2090098': [0.0, nan], 'GSM2090099': [0.0, nan], 'GSM2090100': [0.0, nan], 'GSM2090101': [0.0, nan], 'GSM2090102': [0.0, nan], 'GSM2090103': [0.0, nan], 'GSM2090104': [0.0, nan], 'GSM2090105': [0.0, nan], 'GSM2090106': [0.0, nan], 'GSM2090107': [0.0, nan], 'GSM2090108': [0.0, nan], 'GSM2090109': [0.0, nan], 'GSM2090110': [1.0, nan], 'GSM2090111': [1.0, nan], 'GSM2090112': [1.0, nan], 'GSM2090113': [1.0, nan], 'GSM2090114': [1.0, nan], 'GSM2090115': [1.0, nan], 'GSM2090116': [1.0, nan], 'GSM2090117': [1.0, nan], 'GSM2090118': [1.0, nan], 'GSM2090119': [1.0, nan], 'GSM2090120': [1.0, nan], 'GSM2090121': [1.0, nan], 'GSM2090122': [1.0, nan], 'GSM2090123': [1.0, nan], 'GSM2090124': [1.0, nan], 'GSM2090125': [1.0, nan], 'GSM2090126': [1.0, nan], 'GSM2090127': [1.0, nan], 'GSM2090128': [1.0, nan], 'GSM2090129': [1.0, nan], 'GSM2090130': [1.0, nan], 'GSM2090131': [1.0, nan], 'GSM2090132': [0.0, nan], 'GSM2090133': [0.0, nan], 'GSM2090134': [0.0, nan], 'GSM2090135': [0.0, nan], 'GSM2090136': [0.0, nan], 'GSM2090137': [0.0, nan], 'GSM2090138': [0.0, nan], 'GSM2090139': [0.0, nan], 'GSM2090140': [0.0, nan], 'GSM2090141': [0.0, nan], 'GSM2090142': [0.0, nan], 'GSM2090143': [0.0, nan], 'GSM2090144': [0.0, nan], 'GSM2090145': [0.0, nan], 'GSM2090146': [0.0, nan], 'GSM2090147': [0.0, nan], 'GSM2090148': [0.0, nan], 'GSM2090149': [0.0, nan], 'GSM2090150': [0.0, nan], 'GSM2090151': [0.0, nan], 'GSM2090152': [1.0, nan], 'GSM2090153': [1.0, nan], 'GSM2090154': [1.0, nan], 'GSM2090155': [1.0, nan], 'GSM2090156': [1.0, nan], 'GSM2090157': [1.0, nan], 'GSM2090158': [1.0, nan], 'GSM2090159': [1.0, nan], 'GSM2090160': [1.0, nan], 'GSM2090161': [1.0, nan], 'GSM2090162': [1.0, nan], 'GSM2090163': [1.0, nan], 'GSM2090164': [1.0, nan], 'GSM2090165': [1.0, nan], 'GSM2090166': [1.0, nan], 'GSM2090167': [1.0, nan], 'GSM2090168': [1.0, nan], 'GSM2090169': [1.0, nan], 'GSM2090170': [1.0, nan], 'GSM2090171': [1.0, nan], 'GSM2090172': [1.0, nan], 'GSM2090173': [1.0, nan], 'GSM2090174': [1.0, nan], 'GSM2090175': [1.0, nan], 'GSM2090176': [1.0, nan], 'GSM2090177': [1.0, nan], 'GSM2090178': [1.0, nan], 'GSM2090179': [1.0, nan]}\n",
      "Clinical data saved to ../../output/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE79263.csv\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, the dataset contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For trait (Duchenne Muscular Dystrophy), we can see it in row 2 with 'disease state'\n",
    "trait_row = 2\n",
    "\n",
    "# For age, we can see it in row 4\n",
    "age_row = 4\n",
    "\n",
    "# For gender, there's no information in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = value.lower()\n",
    "    \n",
    "    if \"duchenne\" in value or \"dmd\" in value:\n",
    "        return 1\n",
    "    elif \"healthy\" in value:\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip().lower()\n",
    "    \n",
    "    if \"unknown\" in value:\n",
    "        return None\n",
    "    \n",
    "    # Extract numeric values\n",
    "    import re\n",
    "    age_match = re.search(r'(\\d+)', value)\n",
    "    if age_match:\n",
    "        return int(age_match.group(1))\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata - Initial Filtering\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    try:\n",
    "        # Try to find and load the clinical data\n",
    "        # Check if the sample characteristics data is already available from a previous step\n",
    "        # This assumes that clinical_data was created in a previous step\n",
    "        # and represents the sample characteristics dictionary shown in the output\n",
    "        if 'clinical_data' in locals() or 'clinical_data' in globals():\n",
    "            # Use existing clinical_data variable\n",
    "            pass\n",
    "        else:\n",
    "            # Try different possible file paths/formats for clinical data\n",
    "            potential_paths = [\n",
    "                os.path.join(in_cohort_dir, \"clinical_data.csv\"),\n",
    "                os.path.join(in_cohort_dir, \"sample_characteristics.csv\"),\n",
    "                os.path.join(in_cohort_dir, \"characteristics.csv\")\n",
    "            ]\n",
    "            \n",
    "            clinical_data = None\n",
    "            for path in potential_paths:\n",
    "                if os.path.exists(path):\n",
    "                    clinical_data = pd.read_csv(path)\n",
    "                    print(f\"Loaded clinical data from {path}\")\n",
    "                    break\n",
    "            \n",
    "            if clinical_data is None:\n",
    "                # If no file is found, create a DataFrame from the sample characteristics dictionary\n",
    "                # This is a placeholder based on the structure shown in the previous output\n",
    "                sample_chars = {\n",
    "                    0: ['cell type: non-myogenic CD56-negative', 'differentiation state: Myoblast', 'differentiation state: Myotube'], \n",
    "                    1: ['differentiation state: NA', 'clonal state: Clone', 'clonal state: Primary'], \n",
    "                    2: ['clonal state: NA', 'disease state: healthy', 'disease state: Duchenne muscular dystrophy', 'disease state: Healthy'], \n",
    "                    3: ['disease state: NA', None], \n",
    "                    4: ['age: 80y', 'age: 78y', 'age: unknown', 'age: 79y', 'age: 19y', 'age: 17y', 'age: 15y', 'age: 73y', None]\n",
    "                }\n",
    "                \n",
    "                # Convert the dictionary to a DataFrame\n",
    "                # This is an approximation - in reality we'd need to know how samples map to these characteristics\n",
    "                clinical_data = pd.DataFrame(sample_chars)\n",
    "                print(\"Created clinical data DataFrame from sample characteristics dictionary\")\n",
    "        \n",
    "        if clinical_data is not None:\n",
    "            # Extract clinical features\n",
    "            selected_clinical_df = geo_select_clinical_features(\n",
    "                clinical_df=clinical_data,\n",
    "                trait=trait,\n",
    "                trait_row=trait_row,\n",
    "                convert_trait=convert_trait,\n",
    "                age_row=age_row,\n",
    "                convert_age=convert_age,\n",
    "                gender_row=gender_row,\n",
    "                convert_gender=None\n",
    "            )\n",
    "            \n",
    "            # Preview the data\n",
    "            preview = preview_df(selected_clinical_df)\n",
    "            print(\"Clinical Data Preview:\", preview)\n",
    "            \n",
    "            # Create the directory if it doesn't exist\n",
    "            os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "            \n",
    "            # Save the clinical data\n",
    "            selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "            print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "        else:\n",
    "            print(\"Warning: No clinical data could be loaded or created\")\n",
    "    \n",
    "    except Exception as e:\n",
    "        print(f\"Error in clinical data extraction: {e}\")\n",
    "        print(\"Continuing with other preprocessing steps...\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4f3a8ed5",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "1e937509",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:39:47.371469Z",
     "iopub.status.busy": "2025-03-25T08:39:47.371359Z",
     "iopub.status.idle": "2025-03-25T08:39:47.867582Z",
     "shell.execute_reply": "2025-03-25T08:39:47.866957Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found data marker at line 62\n",
      "Header line: \"ID_REF\"\t\"GSM2090086\"\t\"GSM2090087\"\t\"GSM2090088\"\t\"GSM2090089\"\t\"GSM2090090\"\t\"GSM2090091\"\t\"GSM2090092\"\t\"GSM2090093\"\t\"GSM2090094\"\t\"GSM2090095\"\t\"GSM2090096\"\t\"GSM2090097\"\t\"GSM2090098\"\t\"GSM2090099\"\t\"GSM2090100\"\t\"GSM2090101\"\t\"GSM2090102\"\t\"GSM2090103\"\t\"GSM2090104\"\t\"GSM2090105\"\t\"GSM2090106\"\t\"GSM2090107\"\t\"GSM2090108\"\t\"GSM2090109\"\t\"GSM2090110\"\t\"GSM2090111\"\t\"GSM2090112\"\t\"GSM2090113\"\t\"GSM2090114\"\t\"GSM2090115\"\t\"GSM2090116\"\t\"GSM2090117\"\t\"GSM2090118\"\t\"GSM2090119\"\t\"GSM2090120\"\t\"GSM2090121\"\t\"GSM2090122\"\t\"GSM2090123\"\t\"GSM2090124\"\t\"GSM2090125\"\t\"GSM2090126\"\t\"GSM2090127\"\t\"GSM2090128\"\t\"GSM2090129\"\t\"GSM2090130\"\t\"GSM2090131\"\t\"GSM2090132\"\t\"GSM2090133\"\t\"GSM2090134\"\t\"GSM2090135\"\t\"GSM2090136\"\t\"GSM2090137\"\t\"GSM2090138\"\t\"GSM2090139\"\t\"GSM2090140\"\t\"GSM2090141\"\t\"GSM2090142\"\t\"GSM2090143\"\t\"GSM2090144\"\t\"GSM2090145\"\t\"GSM2090146\"\t\"GSM2090147\"\t\"GSM2090148\"\t\"GSM2090149\"\t\"GSM2090150\"\t\"GSM2090151\"\t\"GSM2090152\"\t\"GSM2090153\"\t\"GSM2090154\"\t\"GSM2090155\"\t\"GSM2090156\"\t\"GSM2090157\"\t\"GSM2090158\"\t\"GSM2090159\"\t\"GSM2090160\"\t\"GSM2090161\"\t\"GSM2090162\"\t\"GSM2090163\"\t\"GSM2090164\"\t\"GSM2090165\"\t\"GSM2090166\"\t\"GSM2090167\"\t\"GSM2090168\"\t\"GSM2090169\"\t\"GSM2090170\"\t\"GSM2090171\"\t\"GSM2090172\"\t\"GSM2090173\"\t\"GSM2090174\"\t\"GSM2090175\"\t\"GSM2090176\"\t\"GSM2090177\"\t\"GSM2090178\"\t\"GSM2090179\"\n",
      "First data line: \"ILMN_1343291\"\t6781.356181\t7322.433553\t7629.757351\t7629.757351\t7161.7875\t7322.433553\t6781.356181\t6781.356181\t6674.727202\t7629.757351\t6093.0695\t6501.572617\t6781.356181\t6995.556776\t6580.845478\t6995.556776\t7322.433553\t6880.699574\t7629.757351\t7161.7875\t6363.804712\t7629.757351\t7322.433553\t7161.7875\t7161.7875\t7629.757351\t6245.360712\t6580.845478\t6781.356181\t6674.727202\t6674.727202\t7322.433553\t6580.845478\t7161.7875\t6995.556776\t7161.7875\t6880.699574\t7322.433553\t6580.845478\t7161.7875\t7322.433553\t7322.433553\t6781.356181\t6297.229223\t7629.757351\t6995.556776\t5066.114149\t5084.816532\t5304.644\t4832.331191\t5842.57817\t5400.466478\t6245.360712\t5476.208276\t6008.865489\t5737.821351\t5197.462766\t6093.0695\t7322.433553\t6781.356181\t5775.262308\t5373.947989\t5178.011659\t6501.572617\t5680.925755\t5680.925755\t5028.094861\t5648.459202\t6194.08934\t5737.821351\t6093.0695\t5239.944925\t7322.433553\t7161.7875\t7161.7875\t6995.556776\t7629.757351\t7161.7875\t7629.757351\t7322.433553\t7629.757351\t7161.7875\t6674.727202\t7322.433553\t6501.572617\t7161.7875\t6048.842617\t6008.865489\t5556.937712\t6008.865489\t4735.286298\t4940.459085\t4800.65217\t5351.745861\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
      "       'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
      "       'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
      "       'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
      "       'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f4cf0170",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "28605186",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:39:47.869007Z",
     "iopub.status.busy": "2025-03-25T08:39:47.868876Z",
     "iopub.status.idle": "2025-03-25T08:39:47.871212Z",
     "shell.execute_reply": "2025-03-25T08:39:47.870777Z"
    }
   },
   "outputs": [],
   "source": [
    "# Reviewing the gene identifiers from the previous output\n",
    "# These identifiers start with \"ILMN_\" which indicates they are Illumina probe IDs\n",
    "# rather than standard human gene symbols (like ACTB, TP53, etc.)\n",
    "# Illumina IDs like ILMN_1343291 need to be mapped to human gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d79796f4",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "9e060be7",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:39:47.872450Z",
     "iopub.status.busy": "2025-03-25T08:39:47.872344Z",
     "iopub.status.idle": "2025-03-25T08:39:56.581722Z",
     "shell.execute_reply": "2025-03-25T08:39:56.581092Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "996c8638",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "24a605e4",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:39:56.583276Z",
     "iopub.status.busy": "2025-03-25T08:39:56.583026Z",
     "iopub.status.idle": "2025-03-25T08:39:58.137498Z",
     "shell.execute_reply": "2025-03-25T08:39:58.136854Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original probe count: 47295\n",
      "Mapped gene count: 21459\n",
      "First 10 genes after mapping:\n",
      "Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2',\n",
      "       'A4GALT', 'A4GNT'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Observe the gene identifiers in both dataframes\n",
    "# The gene expression data has identifiers like 'ILMN_1343291' in its index\n",
    "# The gene annotation data has a column 'ID' with similar values and a 'Symbol' column with gene symbols\n",
    "\n",
    "# 2. Get a gene mapping dataframe by extracting the ID and Symbol columns\n",
    "prob_col = 'ID'  # Column with Illumina probe IDs\n",
    "gene_col = 'Symbol'  # Column with gene symbols\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "\n",
    "# Store the original probe count before mapping\n",
    "original_probe_count = len(gene_data.index)\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene expression data\n",
    "try:\n",
    "    gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "    \n",
    "    # Print some info about the mapping result\n",
    "    print(f\"Original probe count: {original_probe_count}\")\n",
    "    print(f\"Mapped gene count: {len(gene_data.index)}\")\n",
    "    print(\"First 10 genes after mapping:\")\n",
    "    print(gene_data.index[:10])\n",
    "    \n",
    "    # Save the processed gene expression data\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error during gene mapping: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "35528a87",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "e29fd0ea",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:39:58.139048Z",
     "iopub.status.busy": "2025-03-25T08:39:58.138911Z",
     "iopub.status.idle": "2025-03-25T08:40:12.473816Z",
     "shell.execute_reply": "2025-03-25T08:40:12.473182Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data shape: (20254, 94)\n",
      "First few genes with their expression values after normalization:\n",
      "          GSM2090086  GSM2090087  GSM2090088  GSM2090089  GSM2090090  \\\n",
      "Gene                                                                   \n",
      "A1BG       37.186942   37.876860   36.393097   36.853984   41.675867   \n",
      "A1BG-AS1   18.968444   27.694886   17.843437   19.722732   18.721735   \n",
      "A1CF       52.382804   56.100401   54.195220   54.075285   56.799728   \n",
      "A2M        58.343124   31.633324   20.444786   30.120143   31.559206   \n",
      "A2ML1      19.408470   20.445197   17.789207   17.139441   17.707879   \n",
      "\n",
      "          GSM2090091  GSM2090092  GSM2090093  GSM2090094  GSM2090095  ...  \\\n",
      "Gene                                                                  ...   \n",
      "A1BG       36.573538   38.478149   36.868473   48.093884   45.978478  ...   \n",
      "A1BG-AS1   19.211391   18.863080   20.727324   19.544603   17.718498  ...   \n",
      "A1CF       59.610521   55.643605   54.333574   54.260276   53.901068  ...   \n",
      "A2M        81.882382   61.034202   30.675956   17.208939   17.866588  ...   \n",
      "A2ML1      17.363778   17.905866   17.688344   17.496306   18.273821  ...   \n",
      "\n",
      "          GSM2090170  GSM2090171  GSM2090172  GSM2090173   GSM2090174  \\\n",
      "Gene                                                                    \n",
      "A1BG       42.766988   36.859218   39.232960   42.715745    39.968468   \n",
      "A1BG-AS1   18.315347   18.000816   18.214900   17.341939    17.553014   \n",
      "A1CF       53.275429   54.696810   54.751377   58.210025    55.858070   \n",
      "A2M        17.337431   17.385459  945.525515  801.982382  1270.198327   \n",
      "A2ML1      17.819060   17.819001   17.963520   17.207168    18.101247   \n",
      "\n",
      "           GSM2090175  GSM2090176  GSM2090177  GSM2090178  GSM2090179  \n",
      "Gene                                                                   \n",
      "A1BG        40.153471   36.419965   44.768589   37.015807   39.080027  \n",
      "A1BG-AS1    17.850134   18.905473   17.828391   18.151595   19.060859  \n",
      "A1CF        53.334349   53.159293   56.408038   53.184625   56.006998  \n",
      "A2M       1085.394742  616.217571  686.411421  614.427804  553.348922  \n",
      "A2ML1       17.860135   17.369413   17.456904   18.621235   17.508748  \n",
      "\n",
      "[5 rows x 94 columns]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Raw clinical data shape: (5, 95)\n",
      "Clinical features:\n",
      "                             GSM2090086  GSM2090087  GSM2090088  GSM2090089  \\\n",
      "Duchenne_Muscular_Dystrophy         NaN         NaN         NaN         NaN   \n",
      "Age                                80.0        78.0         NaN        79.0   \n",
      "\n",
      "                             GSM2090090  GSM2090091  GSM2090092  GSM2090093  \\\n",
      "Duchenne_Muscular_Dystrophy         NaN         NaN         NaN         NaN   \n",
      "Age                                19.0        17.0        15.0        73.0   \n",
      "\n",
      "                             GSM2090094  GSM2090095  ...  GSM2090170  \\\n",
      "Duchenne_Muscular_Dystrophy         0.0         0.0  ...         1.0   \n",
      "Age                                 NaN         NaN  ...         NaN   \n",
      "\n",
      "                             GSM2090171  GSM2090172  GSM2090173  GSM2090174  \\\n",
      "Duchenne_Muscular_Dystrophy         1.0         1.0         1.0         1.0   \n",
      "Age                                 NaN         NaN         NaN         NaN   \n",
      "\n",
      "                             GSM2090175  GSM2090176  GSM2090177  GSM2090178  \\\n",
      "Duchenne_Muscular_Dystrophy         1.0         1.0         1.0         1.0   \n",
      "Age                                 NaN         NaN         NaN         NaN   \n",
      "\n",
      "                             GSM2090179  \n",
      "Duchenne_Muscular_Dystrophy         1.0  \n",
      "Age                                 NaN  \n",
      "\n",
      "[2 rows x 94 columns]\n",
      "Clinical features saved to ../../output/preprocess/Duchenne_Muscular_Dystrophy/clinical_data/GSE79263.csv\n",
      "Linked data shape: (94, 20256)\n",
      "Linked data preview (first 5 rows, first 5 columns):\n",
      "            Duchenne_Muscular_Dystrophy   Age       A1BG   A1BG-AS1       A1CF\n",
      "GSM2090086                          NaN  80.0  37.186942  18.968444  52.382804\n",
      "GSM2090087                          NaN  78.0  37.876860  27.694886  56.100401\n",
      "GSM2090088                          NaN   NaN  36.393097  17.843437  54.195220\n",
      "GSM2090089                          NaN  79.0  36.853984  19.722732  54.075285\n",
      "GSM2090090                          NaN  19.0  41.675867  18.721735  56.799728\n",
      "Missing values before handling:\n",
      "  Trait (Duchenne_Muscular_Dystrophy) missing: 8 out of 94\n",
      "  Age missing: 87 out of 94\n",
      "  Genes with >20% missing: 0\n",
      "  Samples with >5% missing genes: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (86, 20256)\n",
      "For the feature 'Duchenne_Muscular_Dystrophy', the least common label is '0.0' with 36 occurrences. This represents 41.86% of the dataset.\n",
      "The distribution of the feature 'Duchenne_Muscular_Dystrophy' in this dataset is fine.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: nan\n",
      "  50% (Median): nan\n",
      "  75%: nan\n",
      "Min: nan\n",
      "Max: nan\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Define placeholder for convert_gender since it wasn't needed (gender_row is None)\n",
    "convert_gender = None\n",
    "\n",
    "# 2. Extract clinical features directly from the matrix file\n",
    "try:\n",
    "    # Get the file paths for the matrix file to extract clinical data\n",
    "    _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "    \n",
    "    # Get raw clinical data from the matrix file\n",
    "    _, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
    "    \n",
    "    # Verify clinical data structure\n",
    "    print(\"Raw clinical data shape:\", clinical_raw.shape)\n",
    "    \n",
    "    # Extract clinical features using the defined conversion functions\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_raw,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    print(\"Clinical features:\")\n",
    "    print(clinical_features)\n",
    "    \n",
    "    # Save clinical features to file\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_features.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # 3. Link clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "    print(linked_data.iloc[:5, :5])\n",
    "    \n",
    "    # 4. Handle missing values\n",
    "    print(\"Missing values before handling:\")\n",
    "    print(f\"  Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
    "    if 'Age' in linked_data.columns:\n",
    "        print(f\"  Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
    "    if 'Gender' in linked_data.columns:\n",
    "        print(f\"  Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
    "    \n",
    "    gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
    "    print(f\"  Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n",
    "    print(f\"  Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n",
    "    \n",
    "    cleaned_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
    "    \n",
    "    # 5. Evaluate bias in trait and demographic features\n",
    "    is_trait_biased = False\n",
    "    if len(cleaned_data) > 0:\n",
    "        trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
    "        is_trait_biased = trait_biased\n",
    "    else:\n",
    "        print(\"No data remains after handling missing values.\")\n",
    "        is_trait_biased = True\n",
    "    \n",
    "    # 6. Final validation and save\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=is_trait_biased, \n",
    "        df=cleaned_data,\n",
    "        note=\"Dataset contains gene expression data comparing Duchenne muscular dystrophy vs healthy samples.\"\n",
    "    )\n",
    "    \n",
    "    # 7. Save if usable\n",
    "    if is_usable and len(cleaned_data) > 0:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        cleaned_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"Data was determined to be unusable or empty and was not saved\")\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error processing data: {e}\")\n",
    "    # Handle the error case by still recording cohort info\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,  # Mark as not available due to processing issues\n",
    "        is_biased=True, \n",
    "        df=pd.DataFrame(),  # Empty dataframe\n",
    "        note=f\"Error processing data: {str(e)}\"\n",
    "    )\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}